論文の概要: Enhancing supply chain security with automated machine learning
- arxiv url: http://arxiv.org/abs/2406.13166v1
- Date: Wed, 19 Jun 2024 02:45:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:28:56.411724
- Title: Enhancing supply chain security with automated machine learning
- Title(参考訳): 自動機械学習によるサプライチェーンセキュリティの強化
- Authors: Haibo Wang, Lutfu S. Sua, Bahram Alidaee,
- Abstract要約: この研究は、港の混雑、材料不足、インフレーションによって引き起こされる混乱にますます弱いグローバルサプライチェーンの複雑さに取り組む。
我々の焦点は、不正検出、メンテナンス予測、および材料予約予測を通じてサプライチェーンのセキュリティを強化することである。
これらのプロセスを自動化することで,サプライチェーンセキュリティ対策の効率性と有効性を向上させることができる。
- 参考スコア(独自算出の注目度): 2.994117664413568
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study tackles the complexities of global supply chains, which are increasingly vulnerable to disruptions caused by port congestion, material shortages, and inflation. To address these challenges, we explore the application of machine learning methods, which excel in predicting and optimizing solutions based on large datasets. Our focus is on enhancing supply chain security through fraud detection, maintenance prediction, and material backorder forecasting. We introduce an automated machine learning framework that streamlines data analysis, model construction, and hyperparameter optimization for these tasks. By automating these processes, our framework improves the efficiency and effectiveness of supply chain security measures. Our research identifies key factors that influence machine learning performance, including sampling methods, categorical encoding, feature selection, and hyperparameter optimization. We demonstrate the importance of considering these factors when applying machine learning to supply chain challenges. Traditional mathematical programming models often struggle to cope with the complexity of large-scale supply chain problems. Our study shows that machine learning methods can provide a viable alternative, particularly when dealing with extensive datasets and complex patterns. The automated machine learning framework presented in this study offers a novel approach to supply chain security, contributing to the existing body of knowledge in the field. Its comprehensive automation of machine learning processes makes it a valuable contribution to the domain of supply chain management.
- Abstract(参考訳): この研究は、港の混雑、材料不足、インフレーションによって引き起こされる混乱にますます弱いグローバルサプライチェーンの複雑さに取り組む。
これらの課題に対処するために、大規模なデータセットに基づいたソリューションの予測と最適化に長けた機械学習手法の適用について検討する。
我々の焦点は、不正検出、メンテナンス予測、および材料予約予測を通じてサプライチェーンのセキュリティを強化することである。
データ分析、モデル構築、これらのタスクのハイパーパラメータ最適化を効率化する自動機械学習フレームワークを導入する。
これらのプロセスを自動化することで,サプライチェーンセキュリティ対策の効率性と有効性を向上させることができる。
本研究は,サンプリング手法,カテゴリエンコーディング,特徴選択,ハイパーパラメータ最適化など,機械学習のパフォーマンスに影響を与える重要な要因を明らかにする。
本稿では,機械学習をチェーンの課題に応用する上で,これらの要因を考慮することの重要性を示す。
伝統的な数学的プログラミングモデルは、しばしば大規模なサプライチェーン問題の複雑さに対処するのに苦労する。
我々の研究は、機械学習手法が、特に広範囲なデータセットや複雑なパターンを扱う際に、有効な代替手段となることを示している。
この研究で紹介された自動機械学習フレームワークは、サプライチェーンセキュリティに対する新しいアプローチを提供し、この分野における既存の知識体系に寄与する。
機械学習プロセスの包括的な自動化は、サプライチェーン管理の領域に価値ある貢献をもたらす。
関連論文リスト
- FinML-Chain: A Blockchain-Integrated Dataset for Enhanced Financial Machine Learning [2.0695662173473206]
本稿では、高周波オンチェーンデータと低周波オフチェーンデータを統合するためのフレームワークを提案する。
このフレームワークは、トランザクションフィーメカニズムのような経済メカニズムを分析するためのモジュラーデータセットを生成する。
我々は、金融研究を推進し、ブロックチェーン駆動システムの理解を改善するデータセットを作成できるフレームワークの能力を実証する。
論文 参考訳(メタデータ) (2024-11-25T10:55:11Z) - Power Plays: Unleashing Machine Learning Magic in Smart Grids [0.0]
機械学習アルゴリズムは、スマートメーター、センサー、その他のグリッドコンポーネントから大量のデータを分析して、エネルギー分布の最適化、需要予測、潜在的な障害を示す不規則性の検出を行う。
予測モデルの使用は、機器の故障を予測し、エネルギー供給の信頼性を向上させるのに役立つ。
しかしながら、これらのテクノロジの展開は、データのプライバシやセキュリティ、堅牢なインフラストラクチャの必要性に関する課題も引き起こす。
論文 参考訳(メタデータ) (2024-10-20T15:39:08Z) - Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning [15.615208767760663]
本研究は、ディープラーニングと強化学習技術を活用した倉庫における自動ピッキングシステムに焦点を当てた。
ロボットのピッキング性能と複雑な環境への適応性を向上する上で,これらの技術の有効性を実証する。
論文 参考訳(メタデータ) (2024-08-29T15:39:12Z) - What if? Causal Machine Learning in Supply Chain Risk Management [47.56698850802985]
本稿では,サプライチェーンのリスク介入モデル開発における因果機械学習の利用を提案し,評価する。
我々の研究は、因果機械学習が、異なるサプライチェーンの介入の下で達成できる変化を特定することにより、意思決定プロセスを強化することを強調した。
論文 参考訳(メタデータ) (2024-08-24T11:30:25Z) - Enhancing Supply Chain Visibility with Knowledge Graphs and Large Language Models [49.898152180805454]
本稿では,サプライチェーンの可視性を高めるために,知識グラフ(KG)と大規模言語モデル(LLM)を活用した新しいフレームワークを提案する。
我々のゼロショットLPM駆動アプローチは、様々な公共情報源からのサプライチェーン情報の抽出を自動化する。
NERとREタスクの精度が高く、複雑な多層供給ネットワークを理解する効果的なツールを提供する。
論文 参考訳(メタデータ) (2024-08-05T17:11:29Z) - Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Robust, Deep, and Reinforcement Learning for Management of Communication
and Power Networks [6.09170287691728]
本論文は、まず、分散不確実性や逆データに対して汎用機械学習モデルを堅牢にするための原則的手法を開発する。
次に、この堅牢なフレームワークの上に構築し、グラフメソッドによる堅牢な半教師付き学習を設計します。
この論文の第2部は、次世代の有線および無線ネットワークの可能性を完全に解き放つことを意図している。
論文 参考訳(メタデータ) (2022-02-08T05:49:06Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。