Enhancing supply chain security with automated machine learning
- URL: http://arxiv.org/abs/2406.13166v1
- Date: Wed, 19 Jun 2024 02:45:32 GMT
- Title: Enhancing supply chain security with automated machine learning
- Authors: Haibo Wang, Lutfu S. Sua, Bahram Alidaee,
- Abstract summary: This study tackles the complexities of global supply chains, which are increasingly vulnerable to disruptions caused by port congestion, material shortages, and inflation.
Our focus is on enhancing supply chain security through fraud detection, maintenance prediction, and material backorder forecasting.
By automating these processes, our framework improves the efficiency and effectiveness of supply chain security measures.
- Score: 2.994117664413568
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study tackles the complexities of global supply chains, which are increasingly vulnerable to disruptions caused by port congestion, material shortages, and inflation. To address these challenges, we explore the application of machine learning methods, which excel in predicting and optimizing solutions based on large datasets. Our focus is on enhancing supply chain security through fraud detection, maintenance prediction, and material backorder forecasting. We introduce an automated machine learning framework that streamlines data analysis, model construction, and hyperparameter optimization for these tasks. By automating these processes, our framework improves the efficiency and effectiveness of supply chain security measures. Our research identifies key factors that influence machine learning performance, including sampling methods, categorical encoding, feature selection, and hyperparameter optimization. We demonstrate the importance of considering these factors when applying machine learning to supply chain challenges. Traditional mathematical programming models often struggle to cope with the complexity of large-scale supply chain problems. Our study shows that machine learning methods can provide a viable alternative, particularly when dealing with extensive datasets and complex patterns. The automated machine learning framework presented in this study offers a novel approach to supply chain security, contributing to the existing body of knowledge in the field. Its comprehensive automation of machine learning processes makes it a valuable contribution to the domain of supply chain management.
Related papers
- Enhancing Precision of Automated Teller Machines Network Quality Assessment: Machine Learning and Multi Classifier Fusion Approaches [2.2670946312994]
This study introduces a data fusion approach that utilizes multi-classifier fusion techniques to enhance ATM reliability.
The proposed framework integrates diverse classification models within a Stacking, achieving a dramatic reduction in false alarms from 3.56 percent to just 0.71 percent.
This multi-classifier fusion method synthesizes the strengths of individual models, leading to significant cost savings and improved operational decision-making.
arXiv Detail & Related papers (2025-01-02T05:33:01Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Enhancing Supply Chain Visibility with Knowledge Graphs and Large Language Models [49.898152180805454]
This paper presents a novel framework leveraging Knowledge Graphs (KGs) and Large Language Models (LLMs) to enhance supply chain visibility.
Our zero-shot, LLM-driven approach automates the extraction of supply chain information from diverse public sources.
With high accuracy in NER and RE tasks, it provides an effective tool for understanding complex, multi-tiered supply networks.
arXiv Detail & Related papers (2024-08-05T17:11:29Z) - MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model [0.0]
We introduce the Multi-Channel Data Fusion Network (MCDFN), a hybrid architecture that integrates CNN, Long Short-Term Memory networks (LSTM), and Gated Recurrent Units (GRU)
Our comparative benchmarking demonstrates that MCDFN outperforms seven other deep-learning models.
This research advances demand forecasting methodologies and offers practical guidelines for integrating MCDFN into supply chain systems.
arXiv Detail & Related papers (2024-05-24T14:30:00Z) - QAmplifyNet: Pushing the Boundaries of Supply Chain Backorder Prediction
Using Interpretable Hybrid Quantum-Classical Neural Network [1.227497305546707]
Supply chain management relies on accurate backorder prediction for optimizing inventory control, reducing costs, and enhancing customer satisfaction.
This research introduces a novel methodological framework for supply chain backorder prediction, addressing the challenge of handling large datasets.
Our proposed model, QAmplifyNet, employs quantum-inspired techniques within a quantum-classical neural network to predict backorders effectively on short and imbalanced datasets.
arXiv Detail & Related papers (2023-07-24T15:59:36Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
We propose a method to efficiently retain the knowledge available in a neural network pre-trained on a set of securities.
In our method, the prior knowledge encoded in a pre-trained neural network is maintained by keeping existing connections fixed.
This knowledge is adjusted for the new securities by a set of augmented connections, which are optimized using the new data.
arXiv Detail & Related papers (2022-07-23T18:54:10Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
We show that perturbations in the latent space can be used to define fully unsupervised data augmentations.
We find that our latent adversarial perturbations adaptive to the classifier throughout its training are most effective.
arXiv Detail & Related papers (2021-08-18T03:20:00Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Implementing Reinforcement Learning Algorithms in Retail Supply Chains
with OpenAI Gym Toolkit [0.0]
Reinforcement Learning (RL) with its ability to train systems to respond to unforeseen environments is being adopted in retail supply chain management (SCM)
This white paper explores the application of RL in supply chain forecasting and describes how to build suitable RL models and algorithms by using the OpenAI Gym toolkit.
arXiv Detail & Related papers (2021-04-27T03:35:42Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.