論文の概要: PRESTO: Progressive Pretraining Enhances Synthetic Chemistry Outcomes
- arxiv url: http://arxiv.org/abs/2406.13193v1
- Date: Wed, 19 Jun 2024 03:59:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:19:11.926761
- Title: PRESTO: Progressive Pretraining Enhances Synthetic Chemistry Outcomes
- Title(参考訳): PRESTO: プログレッシブプレトレーニングによる合成化学の成果
- Authors: He Cao, Yanjun Shao, Zhiyuan Liu, Zijing Liu, Xiangru Tang, Yuan Yao, Yu Li,
- Abstract要約: MLLM(Multimodal Large Language Models)は、様々な科学分野において普及している。
しかし、現在のアプローチは化学反応を理解する上での複数の分子グラフ相互作用の重要な役割を無視することが多い。
PRESTOは、事前学習戦略とデータセット構成の包括的なベンチマークを統合することで、分子-テキストのモダリティギャップを橋渡しする新しいフレームワークである。
- 参考スコア(独自算出の注目度): 33.293741487835824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal Large Language Models (MLLMs) have seen growing adoption across various scientific disciplines. These advancements encourage the investigation of molecule-text modeling within synthetic chemistry, a field dedicated to designing and conducting chemical reactions to synthesize new compounds with desired properties and applications. Current approaches, however, often neglect the critical role of multiple molecule graph interaction in understanding chemical reactions, leading to suboptimal performance in synthetic chemistry tasks. This study introduces PRESTO(Progressive Pretraining Enhances Synthetic Chemistry Outcomes), a new framework that bridges the molecule-text modality gap by integrating a comprehensive benchmark of pretraining strategies and dataset configurations. It progressively improves multimodal LLMs through cross-modal alignment and multi-graph understanding. Our extensive experiments demonstrate that PRESTO offers competitive results in downstream synthetic chemistry tasks. The code can be found at https://github.com/IDEA-XL/PRESTO.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は、様々な科学分野において普及している。
これらの進歩により、合成化学における分子-テキストモデリングの研究が促進され、化学反応を設計、実行し、望ましい性質と応用を持つ新しい化合物を合成する分野である。
しかしながら、現在のアプローチでは、化学反応を理解するために複数の分子グラフ相互作用が重要な役割を欠いていることが多く、合成化学のタスクにおいて最適以下の性能をもたらす。
PRESTO(Progressive Pretraining Enhances Synthetic Chemistry Outcomes)は、事前学習戦略とデータセット構成の包括的なベンチマークを統合することで、分子-テキスト間のモダリティギャップを橋渡しする新しいフレームワークである。
クロスモーダルアライメントとマルチグラフ理解により、マルチモーダルLLMを徐々に改善する。
我々の広範な実験は、PRESTOが下流の合成化学タスクにおいて競合する結果をもたらすことを示した。
コードはhttps://github.com/IDEA-XL/PRESTOで見ることができる。
関連論文リスト
- BatGPT-Chem: A Foundation Large Model For Retrosynthesis Prediction [65.93303145891628]
BatGPT-Chemは150億のパラメータを持つ大規模な言語モデルであり、再合成予測の強化に最適化されている。
我々のモデルは幅広い化学知識を捉え、反応条件の正確な予測を可能にする。
この開発により、化学者は新しい化合物を十分に扱うことができ、医薬品製造と材料科学の革新サイクルを早める可能性がある。
論文 参考訳(メタデータ) (2024-08-19T05:17:40Z) - ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area [50.15254966969718]
textbfChemVLMは、化学応用のためのオープンソースの化学マルチモーダル大規模言語モデルである。
ChemVLMは、テキストと視覚の化学情報の両方を理解する能力を高めるために、慎重にキュレートされたバイリンガルデータセットで訓練されている。
我々はChemVLMを、様々なタスクにおいて、オープンソースおよびプロプライエタリな多モーダルな大規模言語モデルに対してベンチマークする。
論文 参考訳(メタデータ) (2024-08-14T01:16:40Z) - ReactXT: Understanding Molecular "Reaction-ship" via Reaction-Contextualized Molecule-Text Pretraining [76.51346919370005]
反応テキストモデリングのためのReactXTと実験手順予測のためのOpenExpを提案する。
ReactXTは、インプットコンテキストの3つのタイプをインクリメンタルに事前トレーニングする。
私たちのコードはhttps://github.com/syr-cn/ReactXT.comで公開されています。
論文 参考訳(メタデータ) (2024-05-23T06:55:59Z) - ChemLLM: A Chemical Large Language Model [49.308528569982805]
大規模言語モデル(LLM)は化学応用において顕著な進歩を遂げた。
しかし、コミュニティには化学に特化したLLMが欠落している。
本稿では,化学に特化した最初のLLMを特徴とする包括的フレームワークであるChemLLMを紹介する。
論文 参考訳(メタデータ) (2024-02-10T01:11:59Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-Xは、検索増強生成(RAG)技術を用いた化学合成において、反応条件レコメンデーション(RCR)タスクを自動化する。
Chemist-Xはオンラインの分子データベースを尋問し、最新の文献データベースから重要なデータを蒸留する。
Chemist-Xは化学者の作業量を大幅に減らし、より根本的で創造的な問題に集中できるようにする。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - Asymmetric Contrastive Multimodal Learning for Advancing Chemical Understanding [18.217304893881405]
分子に適した新しいアプローチとして,非対称コントラスト型マルチモーダルラーニング(ACML)を導入する。
ACMLは効果的な非対称コントラスト学習の力を利用して、様々な化学修飾物から分子グラフ表現への情報をシームレスに伝達する。
このフレームワークの有効性を,大規模な相互モダリティ検索と異性判別タスクによって実証する。
論文 参考訳(メタデータ) (2023-11-11T01:58:45Z) - Bridging the Gap between Chemical Reaction Pretraining and Conditional
Molecule Generation with a Unified Model [3.3031562864527664]
反応表現学習と分子生成の両課題に対処する統合フレームワークを提案する。
有機化学機構にインスパイアされた我々は,モデルに誘導バイアスを組み込むことのできる,新しい事前学習フレームワークを開発した。
我々のフレームワークは、ダウンストリームタスクに挑戦する上で、最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-03-13T10:06:41Z) - Modern Hopfield Networks for Few- and Zero-Shot Reaction Prediction [3.885603826656419]
物理分子を実現するコンピュータ支援合成計画(CASP)はまだ初期段階にあり、大規模な分子発見を可能にする性能レベルが欠けています。
コントラスト学習により最適化された最新のHopfieldネットワーク(MHN)を用いた深層学習アーキテクチャを用いた新しい反応予測手法を提案する。
その結果,mhnのコントラスト学習アプローチは,従来の手法と対照的に,レア,シングル,さらにはトレーニング例のない反応予測に対して,少数およびゼロショットの学習を可能にすることがわかった。
論文 参考訳(メタデータ) (2021-04-07T17:35:00Z) - Learning To Navigate The Synthetically Accessible Chemical Space Using
Reinforcement Learning [75.95376096628135]
ド・ノボ薬物設計のための強化学習(RL)を利用した新しい前方合成フレームワークを提案する。
このセットアップでは、エージェントは巨大な合成可能な化学空間をナビゲートする。
本研究は,合成可能な化学空間を根本的に拡張する上で,エンド・ツー・エンド・トレーニングが重要なパラダイムであることを示す。
論文 参考訳(メタデータ) (2020-04-26T21:40:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。