論文の概要: Application of Computer Deep Learning Model in Diagnosis of Pulmonary Nodules
- arxiv url: http://arxiv.org/abs/2406.13205v1
- Date: Wed, 19 Jun 2024 04:27:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 23:19:11.910786
- Title: Application of Computer Deep Learning Model in Diagnosis of Pulmonary Nodules
- Title(参考訳): 肺結節の診断におけるコンピュータ深層学習モデルの応用
- Authors: Yutian Yang, Hongjie Qiu, Yulu Gong, Xiaoyi Liu, Yang Lin, Muqing Li,
- Abstract要約: 再建法を用いて肺の3次元シミュレーションモデルを構築した。
コンピュータ支援肺結節検出モデルを構築した。
診断率は従来の診断法に比べて有意に改善した。
- 参考スコア(独自算出の注目度): 5.058992545593932
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The 3D simulation model of the lung was established by using the reconstruction method. A computer aided pulmonary nodule detection model was constructed. The process iterates over the images to refine the lung nodule recognition model based on neural networks. It is integrated with 3D virtual modeling technology to improve the interactivity of the system, so as to achieve intelligent recognition of lung nodules. A 3D RCNN (Region-based Convolutional Neural Network) was utilized for feature extraction and nodule identification. The LUNA16 large sample database was used as the research dataset. FROC (Free-response Receiver Operating Characteristic) analysis was applied to evaluate the model, calculating sensitivity at various false positive rates to derive the average FROC. Compared with conventional diagnostic methods, the recognition rate was significantly improved. This technique facilitates the detection of pulmonary abnormalities at an initial phase, which holds immense value for the prompt diagnosis of lung malignancies.
- Abstract(参考訳): 再建法を用いて肺の3次元シミュレーションモデルを構築した。
コンピュータ支援肺結節検出モデルを構築した。
このプロセスは画像を反復して、ニューラルネットワークに基づいて肺結節認識モデルを洗練する。
3次元仮想モデリング技術と統合され、肺結節のインテリジェントな認識を実現するためにシステムの相互作用性を改善する。
3次元RCNN(Region-based Convolutional Neural Network)を用いて特徴抽出と結節同定を行った。
LUNA16の大きなサンプルデータベースが研究データセットとして使用された。
FROC (Free-Response Receiver Operating Characteristics) 解析を適用し, 各種偽陽性率の感度を算出し, 平均FROCを導出した。
従来の診断法と比較すると,認識率は有意に改善した。
本手法は,早期の肺悪性腫瘍の早期診断に有用である肺病変の早期発見を容易にする。
関連論文リスト
- Deep Learning-Based Channel Squeeze U-Structure for Lung Nodule Detection and Segmentation [7.53596352508181]
本稿では,肺結節の自動検出とセグメンテーションのための新しいディープラーニング手法を提案する。
この手法は、感度、Dice類似度係数、精度、および平均結合断面積(IoU)の点で優れた性能を示す。
その結果,本手法はコンピュータ支援診断システムの改善に有意な可能性を秘めていることが明らかとなった。
論文 参考訳(メタデータ) (2024-09-20T19:47:07Z) - Swin-Tempo: Temporal-Aware Lung Nodule Detection in CT Scans as Video
Sequences Using Swin Transformer-Enhanced UNet [2.7547288571938795]
本稿では、畳み込みニューラルネットワークと視覚変換器の長所を利用する革新的なモデルを提案する。
ビデオ中の物体検出にインスパイアされた各3次元CT画像をビデオとして扱い、個々のスライスをフレームとして、肺結節をオブジェクトとして扱い、時系列アプリケーションを可能にする。
論文 参考訳(メタデータ) (2023-10-05T07:48:55Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - MIA-3DCNN: COVID-19 Detection Based on a 3D CNN [0.0]
畳み込みニューラルネットワークは、肺画像における新型コロナウイルスによる肺炎の検出に広く用いられている。
本研究は,3次元畳み込みニューラルネットワークに基づく,コンピュータ断層撮影画像中のCOVID-19を検出するアーキテクチャについて述べる。
論文 参考訳(メタデータ) (2023-03-19T18:55:22Z) - A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples [10.006124666261229]
新しいデータ拡張方法と埋め込み機構の2つの戦略が導入された。
肺結節検出のための拡張手法を用いた3DVNETモデルの結果,提案手法がGAN(Generative Adversarial Network)の枠組みに基づく手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-03-02T13:58:45Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
肺癌早期検診では胸部X線像の肺結節検出が一般的である。
ディープラーニングに基づくコンピュータ支援診断(CAD)システムは、CXRの結節スクリーニングのために放射線科医をサポートすることができる。
このようなデータセットの可用性を損なうため,データ拡張のために肺結節合成法を提案する。
論文 参考訳(メタデータ) (2022-07-19T16:38:48Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Unsupervised Contrastive Learning based Transformer for Lung Nodule
Detection [6.693379403133435]
CTによる肺結節の早期発見は,肺癌患者の長期生存と生活の質の向上に不可欠である。
CAD (Computer-Aided Detection/diagnosis) はこの文脈において第2または同時読影器として有用である。
肺結節の正確な検出は、サイズ、位置、および肺結節の出現のばらつきにより、CADシステムや放射線技師にとって依然として困難である。
近年のコンピュータビジョン技術に触発されて,肺結節を同定するための自己教師付き領域ベース3次元トランスフォーマーモデルを提案する。
論文 参考訳(メタデータ) (2022-04-30T01:19:00Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。