Self-Explainable Temporal Graph Networks based on Graph Information Bottleneck
- URL: http://arxiv.org/abs/2406.13214v1
- Date: Wed, 19 Jun 2024 04:55:34 GMT
- Title: Self-Explainable Temporal Graph Networks based on Graph Information Bottleneck
- Authors: Sangwoo Seo, Sungwon Kim, Jihyeong Jung, Yoonho Lee, Chanyoung Park,
- Abstract summary: Temporal Graph Networks (TGNN) have the ability to capture both the graph topology and dynamic dependencies of interactions within a graph over time.
There has been a growing need to explain the predictions of TGNN models due to the difficulty in identifying how past events influence their predictions.
This is the first work that simultaneously performs prediction and explanation for temporal graphs in an end-to-end manner.
- Score: 21.591458816091126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal Graph Neural Networks (TGNN) have the ability to capture both the graph topology and dynamic dependencies of interactions within a graph over time. There has been a growing need to explain the predictions of TGNN models due to the difficulty in identifying how past events influence their predictions. Since the explanation model for a static graph cannot be readily applied to temporal graphs due to its inability to capture temporal dependencies, recent studies proposed explanation models for temporal graphs. However, existing explanation models for temporal graphs rely on post-hoc explanations, requiring separate models for prediction and explanation, which is limited in two aspects: efficiency and accuracy of explanation. In this work, we propose a novel built-in explanation framework for temporal graphs, called Self-Explainable Temporal Graph Networks based on Graph Information Bottleneck (TGIB). TGIB provides explanations for event occurrences by introducing stochasticity in each temporal event based on the Information Bottleneck theory. Experimental results demonstrate the superiority of TGIB in terms of both the link prediction performance and explainability compared to state-of-the-art methods. This is the first work that simultaneously performs prediction and explanation for temporal graphs in an end-to-end manner.
Related papers
- Time-aware Graph Structure Learning via Sequence Prediction on Temporal
Graphs [10.034072706245544]
We propose a Time-aware Graph Structure Learning (TGSL) approach via sequence prediction on temporal graphs.
In particular, it predicts time-aware context embedding and uses the Gumble-Top-K to select the closest candidate edges to this context embedding.
Experiments on temporal link prediction benchmarks demonstrate that TGSL yields significant gains for the popular TGNs such as TGAT and GraphMixer.
arXiv Detail & Related papers (2023-06-13T11:34:36Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Probing Graph Representations [77.7361299039905]
We use a probing framework to quantify the amount of meaningful information captured in graph representations.
Our findings on molecular datasets show the potential of probing for understanding the inductive biases of graph-based models.
We advocate for probing as a useful diagnostic tool for evaluating graph-based models.
arXiv Detail & Related papers (2023-03-07T14:58:18Z) - CLEAR: Generative Counterfactual Explanations on Graphs [60.30009215290265]
We study the problem of counterfactual explanation generation on graphs.
A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed.
We propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models.
arXiv Detail & Related papers (2022-10-16T04:35:32Z) - An Explainer for Temporal Graph Neural Networks [27.393641343203363]
Temporal graph neural networks (TGNNs) have been widely used for modeling time-evolving graph-related tasks.
We propose a novel explainer framework for TGNN models.
arXiv Detail & Related papers (2022-09-02T04:12:40Z) - OrphicX: A Causality-Inspired Latent Variable Model for Interpreting
Graph Neural Networks [42.539085765796976]
This paper proposes a new eXplanation framework, called OrphicX, for generating causal explanations for graph neural networks (GNNs)
We construct a distinct generative model and design an objective function that encourages the generative model to produce causal, compact, and faithful explanations.
We show that OrphicX can effectively identify the causal semantics for generating causal explanations, significantly outperforming its alternatives.
arXiv Detail & Related papers (2022-03-29T03:08:33Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
We present a new generative and structured commonsense-reasoning task (and an associated dataset) of explanation graph generation for stance prediction.
Specifically, given a belief and an argument, a model has to predict whether the argument supports or counters the belief and also generate a commonsense-augmented graph that serves as non-trivial, complete, and unambiguous explanation for the predicted stance.
A significant 83% of our graphs contain external commonsense nodes with diverse structures and reasoning depths.
arXiv Detail & Related papers (2021-04-15T17:51:36Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
We present Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent factors.
Motivated by the low pass characteristics in balanced graph cut, we propose a new variant of GNN named Heatts to encode the input graph into cluster memberships.
arXiv Detail & Related papers (2020-10-09T07:35:26Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.