Data Contamination Can Cross Language Barriers
- URL: http://arxiv.org/abs/2406.13236v2
- Date: Wed, 30 Oct 2024 17:59:08 GMT
- Title: Data Contamination Can Cross Language Barriers
- Authors: Feng Yao, Yufan Zhuang, Zihao Sun, Sunan Xu, Animesh Kumar, Jingbo Shang,
- Abstract summary: The opacity in developing large language models (LLMs) is raising growing concerns about the potential contamination of public benchmarks in the pre-training data.
We first present a cross-lingual form of contamination that inflates LLMs' performance while evading current detection methods.
We propose generalization-based approaches to unmask such deeply concealed contamination.
- Score: 29.103517721155487
- License:
- Abstract: The opacity in developing large language models (LLMs) is raising growing concerns about the potential contamination of public benchmarks in the pre-training data. Existing contamination detection methods are typically based on the text overlap between training and evaluation data, which can be too superficial to reflect deeper forms of contamination. In this paper, we first present a cross-lingual form of contamination that inflates LLMs' performance while evading current detection methods, deliberately injected by overfitting LLMs on the translated versions of benchmark test sets. Then, we propose generalization-based approaches to unmask such deeply concealed contamination. Specifically, we examine the LLM's performance change after modifying the original benchmark by replacing the false answer choices with correct ones from other questions. Contaminated models can hardly generalize to such easier situations, where the false choices can be \emph{not even wrong}, as all choices are correct in their memorization. Experimental results demonstrate that cross-lingual contamination can easily fool existing detection methods, but not ours. In addition, we discuss the potential utilization of cross-lingual contamination in interpreting LLMs' working mechanisms and in post-training LLMs for enhanced multilingual capabilities. The code and dataset we use can be obtained from \url{https://github.com/ShangDataLab/Deep-Contam}.
Related papers
- Rolling the DICE on Idiomaticity: How LLMs Fail to Grasp Context [12.781022584125925]
We construct a novel, controlled contrastive dataset designed to test whether LLMs can effectively use context to disambiguate idiomatic meaning.
Our findings reveal that LLMs often fail to resolve idiomaticity when it is required to attend to the surrounding context.
We make our code and dataset publicly available.
arXiv Detail & Related papers (2024-10-21T14:47:37Z) - Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
We introduce a divergence-based calibration method, inspired by the divergence-from-randomness concept, to calibrate token probabilities for pretraining data detection.
We have developed a Chinese-language benchmark, PatentMIA, to assess the performance of detection approaches for LLMs on Chinese text.
arXiv Detail & Related papers (2024-09-23T07:55:35Z) - Assessing Contamination in Large Language Models: Introducing the LogProber method [17.91379291654773]
In machine learning, contamination refers to situations where testing data leak into the training set.
In the present paper we introduce LogProber, a novel, efficient, algorithm that we show able to detect contamination using token probability in given sentences.
arXiv Detail & Related papers (2024-08-26T15:29:34Z) - Robustness of LLMs to Perturbations in Text [2.0670689746336]
Large language models (LLMs) have shown impressive performance, but can they handle the inevitable noise in real-world data?
This work tackles this critical question by investigating LLMs' resilience against morphological variations in text.
Our findings show that contrary to popular beliefs, generative LLMs are quiet robust to noisy perturbations in text.
arXiv Detail & Related papers (2024-07-12T04:50:17Z) - Understanding and Mitigating Language Confusion in LLMs [76.96033035093204]
We evaluate 15 typologically diverse languages with existing and newly-created English and multilingual prompts.
We find that Llama Instruct and Mistral models exhibit high degrees of language confusion.
We find that language confusion can be partially mitigated via few-shot prompting, multilingual SFT and preference tuning.
arXiv Detail & Related papers (2024-06-28T17:03:51Z) - CSS: Contrastive Semantic Similarity for Uncertainty Quantification of LLMs [1.515687944002438]
We propose Contrastive Semantic Similarity, a module to obtain similarity features for measuring uncertainty for text pairs.
We conduct extensive experiments with three large language models (LLMs) on several benchmark question-answering datasets.
Results show that our proposed method performs better in estimating reliable responses of LLMs than comparable baselines.
arXiv Detail & Related papers (2024-06-05T11:35:44Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - How Much are Large Language Models Contaminated? A Comprehensive Survey and the LLMSanitize Library [68.10605098856087]
Large Language Models (LLMs) are increasingly being used in business applications and fundraising in AI.
LLMs' performance may not be reliable anymore, as the high performance may be at least partly due to their previous exposure to the data.
We release an open-source Python library named LLMSanitize implementing major contamination detection algorithms.
arXiv Detail & Related papers (2024-03-31T14:32:02Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - CLEAN-EVAL: Clean Evaluation on Contaminated Large Language Models [12.367149496971408]
Clean-Eval mitigates the issue of data contamination and evaluates the models in a cleaner manner.
Clean-Eval employs an LLM to paraphrase and back-translate the contaminated data into a candidate set.
A semantic detector is then used to filter the generated low-quality samples.
The best candidate is finally selected from this set based on the BLEURT score.
arXiv Detail & Related papers (2023-11-15T17:50:30Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.