論文の概要: Medical Spoken Named Entity Recognition
- arxiv url: http://arxiv.org/abs/2406.13337v3
- Date: Wed, 02 Apr 2025 09:12:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:16:52.799948
- Title: Medical Spoken Named Entity Recognition
- Title(参考訳): エンティティ認識という医療用スポット
- Authors: Khai Le-Duc, David Thulke, Hung-Phong Tran, Long Vo-Dang, Khai-Nguyen Nguyen, Truong-Son Hy, Ralf Schlüter,
- Abstract要約: 医療領域における最初の音声NERデータセットであるVietMed-NERを紹介する。
我々の知る限り、ベトナムの現実世界のデータセットは、エンティティの型数に関する世界最大のNERデータセットである。
- 参考スコア(独自算出の注目度): 18.348129901298652
- License:
- Abstract: Spoken Named Entity Recognition (NER) aims to extract named entities from speech and categorise them into types like person, location, organization, etc. In this work, we present VietMed-NER - the first spoken NER dataset in the medical domain. To our knowledge, our Vietnamese real-world dataset is the largest spoken NER dataset in the world regarding the number of entity types, featuring 18 distinct types. Furthermore, we present baseline results using various state-of-the-art pre-trained models: encoder-only and sequence-to-sequence; and conduct quantitative and qualitative error analysis. We found that pre-trained multilingual models generally outperform monolingual models on reference text and ASR output and encoders outperform sequence-to-sequence models in NER tasks. By translating the transcripts, the dataset can also be utilised for text NER in the medical domain in other languages than Vietnamese. All code, data and models are publicly available: https://github.com/leduckhai/MultiMed/tree/master/VietMed-NER.
- Abstract(参考訳): Spoken Named Entity Recognition (NER)は、音声から名前付きエンティティを抽出し、人、場所、組織などのタイプに分類することを目的としている。
本稿では,医療領域における最初の音声NERデータセットであるVietMed-NERを紹介する。
我々の知る限り、ベトナムの現実世界のデータセットは、エンティティのタイプ数に関する世界最大のNERデータセットであり、18の異なるタイプが特徴です。
さらに,エンコーダのみとシークエンス・ツー・シークエンスという,最先端の事前訓練モデルを用いたベースライン解析を行い,定量的かつ定性的な誤差解析を行う。
事前学習された多言語モデルは、典型的には参照テキストとASR出力とエンコーダで単言語モデルより優れ、NERタスクではシーケンス・ツー・シーケンスモデルより優れていた。
データセットを翻訳することで、ベトナム語以外の言語で医学領域のNERをテキスト化することもできる。
すべてのコード、データ、モデルは、https://github.com/leduckhai/MultiMed/tree/master/VietMed-NER.comで公開されている。
関連論文リスト
- "I've Heard of You!": Generate Spoken Named Entity Recognition Data for Unseen Entities [59.22329574700317]
名前付きエンティティ認識(NER)は、名前付きエンティティを音声から識別することを目的としている。
しかし、新しい名前のエンティティが毎日現れ、Spoken NERデータに注釈をつけるのはコストがかかる。
そこで本稿では,NEDに基づく音声NERデータ生成手法を提案する。
論文 参考訳(メタデータ) (2024-12-26T07:43:18Z) - A Multi-way Parallel Named Entity Annotated Corpus for English, Tamil and Sinhala [0.8675380166590487]
本報告では, 名前付きエンティティ (NE) を付加した英語-タミル・シンハラコーパスについて述べる。
事前訓練された多言語言語モデル(mLM)を用いて、シンハラとタミルのデータセット上で、新しいベンチマークNER(Named Entity Recognition)結果を確立する。
論文 参考訳(メタデータ) (2024-12-03T00:28:31Z) - LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation [67.24113079928668]
本稿では、バイリンガル辞書に見られる感覚のカバレッジによって駆動されるデータキュレーション手法であるLexMatcherを提案する。
我々の手法は、WMT2022テストセットの確立されたベースラインよりも優れています。
論文 参考訳(メタデータ) (2024-06-03T15:30:36Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual
Labeled Sequence Translation [113.99145386490639]
言語間NERは、整列した言語間表現や機械翻訳結果を通じて、言語間で知識を伝達することができる。
ゼロショット言語間NERを実現するために,クロスランガル・エンティティ・プロジェクション・フレームワーク(CROP)を提案する。
多言語ラベル付きシーケンス翻訳モデルを用いて、タグ付けされたシーケンスをターゲット言語に投影し、ターゲットの原文にラベル付けする。
論文 参考訳(メタデータ) (2022-10-13T13:32:36Z) - MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity
Recognition [15.805414696789796]
我々は、11言語にわたる3つのドメイン(ウィキ文、質問、検索クエリ)をカバーする、名前付きエンティティ認識のための大規模な多言語データセットであるMultiCoNERを提案する。
このデータセットは、低コンテキストシナリオを含む、NERの現代的課題を表現するように設計されている。
論文 参考訳(メタデータ) (2022-08-30T20:45:54Z) - AsNER -- Annotated Dataset and Baseline for Assamese Named Entity
recognition [7.252817150901275]
提案されたNERデータセットは、ディープニューラルネットワークベースのアサマセ言語処理のための重要なリソースである可能性が高い。
我々は、NERモデルをトレーニングしてデータセットをベンチマークし、教師付きエンティティ認識のための最先端アーキテクチャを用いて評価する。
全てのベースラインの中で最も高いF1スコアは、単語埋め込み法として MuRIL を使用する場合、80.69%の精度を達成する。
論文 参考訳(メタデータ) (2022-07-07T16:45:55Z) - Mono vs Multilingual BERT: A Case Study in Hindi and Marathi Named
Entity Recognition [0.7874708385247353]
我々は、ヒンディー語やマラタイ語のような低リソースのインドの言語について、NERについて検討する。
BERTのさまざまなバリエーションであるbase-BERT、RoBERTa、AlBERTについて検討し、公開されているHindiおよびMarathi NERデータセットでそれらをベンチマークする。
モノリンガルのMahaRoBERTaモデルがMarathi NERに最適であるのに対し,マルチリンガルのXLM-RoBERTaはHindi NERに最適であることを示す。
論文 参考訳(メタデータ) (2022-03-24T07:50:41Z) - COVID-19 Named Entity Recognition for Vietnamese [6.17059264011429]
ベトナムで最初の手作業によるcovid-19ドメイン固有データセットについて紹介する。
私たちのデータセットは、新たに定義されたエンティティタイプを持つ名前付きエンティティ認識タスクにアノテートされます。
当社のデータセットには、既存のベトナムのNERデータセットと比較して最大数のエンティティが含まれています。
論文 参考訳(メタデータ) (2021-04-08T16:35:34Z) - Multilingual Autoregressive Entity Linking [49.35994386221958]
mGENREはMultilingual Entity Linking問題のためのシーケンス対シーケンスシステムである。
与えられた言語で言及すると、mGENREはターゲットエンティティの名前を左から右へ、トークンごとに予測します。
提案手法の有効性を3つのMELベンチマーク実験を含む広範囲な評価により示す。
論文 参考訳(メタデータ) (2021-03-23T13:25:55Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASPは、汎用多言語ニューラルマシン翻訳モデルを事前訓練するためのアプローチである。
我々は,低,中,豊かな資源を含む多種多様な環境における42の翻訳方向の実験を行い,エキゾチックな言語対への変換を行った。
論文 参考訳(メタデータ) (2020-10-07T03:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。