Quantum simulation for strongly interacting fermions with neutral atoms array: towards the simulation of materials of interest
- URL: http://arxiv.org/abs/2406.13343v1
- Date: Wed, 19 Jun 2024 08:48:10 GMT
- Title: Quantum simulation for strongly interacting fermions with neutral atoms array: towards the simulation of materials of interest
- Authors: Antoine Michel,
- Abstract summary: We design a variational algorithm that can be implemented on a Rydberg atom simulator for chemistry.
We show that by limiting the number of measurements, we can reach the fundamental energy of H2, LiH and BeH2 molecules with 5% error.
For a second algorithm, we used the "slave" spin method to implement the physics of the Fermi-Hubbard 2D model on a Rydberg atom simulator.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulation holds the promise of improving the atomic simulations used at EDF to anticipate the ageing of materials of interest. One simulator in particular seems well suited to modeling interacting electrons: the Rydberg atoms quantum processor. The first task of this thesis is to design a variational algorithm that can be implemented on a Rydberg atom simulator for chemistry. This algorithm is specially designed for this platform and optimized by recent theoretical tools. We compare our numerical results, obtained with an emulation of a real experiment, with other approaches and show that our method is more efficient. Finally, we show that by limiting the number of measurements to make the experiment feasible on a real architecture, we can reach the fundamental energy of H2, LiH and BeH2 molecules with 5% error.For a second algorithm, we used the "slave" spin method to implement the physics of the Fermi-Hubbard 2D model on a Rydberg atom simulator. The idea is to decouple the degrees of freedom of charges and "slave" spins using a mean field to obtain two self-consistent Hamiltonians: a classically solvable one and an Ising Hamiltonian that can be reproduced on a real machine. We show numerically that we can recover a Mott transition from the initial model with this method even when emulating the noise of a real experiment, and we show that we can also recover the dynamics of non-equilibrium electrons in this same paradigm with good results. Both algorithms can possibly be improved theoretically until they reach materials of interest, but they can also be implemented on today's existing architectures, to achieve a potential quantum advantage
Related papers
- Simulation of the 1d XY model on a quantum computer [0.0]
We present the comprehensive scheme for the exact simulation of the 1-D XY model on a quantum computer.
We propose a novel approach to design a quantum circuit to perform exact time evolution.
arXiv Detail & Related papers (2024-10-28T15:44:13Z) - Simulating open quantum systems with giant atoms [0.0]
We introduce a simulator for open quantum many-body systems based on giant atoms, i.e., atoms (possibly artificial)
We first show that a simulator consisting of two giant atoms can simulate the dynamics of two coupled qubits.
We demonstrate and analyze the robustness of these simulation results against noise affecting the giant atoms.
arXiv Detail & Related papers (2024-06-19T16:31:42Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Nearly tight Trotterization of interacting electrons [5.446536331020099]
We show that quantum simulation can be improved by exploiting commutativity of the target Hamiltonian, sparsity of interactions, and prior knowledge of the initial state.
We achieve this using Trotterization for a class of interacting electrons that encompasses various physical systems.
arXiv Detail & Related papers (2020-12-16T19:00:05Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.