論文の概要: VELO: A Vector Database-Assisted Cloud-Edge Collaborative LLM QoS Optimization Framework
- arxiv url: http://arxiv.org/abs/2406.13399v1
- Date: Wed, 19 Jun 2024 09:41:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 20:12:53.192654
- Title: VELO: A Vector Database-Assisted Cloud-Edge Collaborative LLM QoS Optimization Framework
- Title(参考訳): VELO: ベクトルデータベースによるクラウドエッジコラボレーションLLM QoS最適化フレームワーク
- Authors: Zhi Yao, Zhiqing Tang, Jiong Lou, Ping Shen, Weijia Jia,
- Abstract要約: 大規模言語モデル (LLM) は広く普及し、様々な領域で広く利用されている。
ほとんどのLDMデプロイメントは、クラウドデータセンタ内で発生し、相当な応答遅延と高いコストが発生する。
LLM要求結果をエッジに格納するためにベクトルデータベースキャッシュを活用することで、同様の要求に関連する応答遅延とコストを大幅に軽減することができる。
- 参考スコア(独自算出の注目度): 10.716259527813522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Large Language Model (LLM) has gained significant popularity and is extensively utilized across various domains. Most LLM deployments occur within cloud data centers, where they encounter substantial response delays and incur high costs, thereby impacting the Quality of Services (QoS) at the network edge. Leveraging vector database caching to store LLM request results at the edge can substantially mitigate response delays and cost associated with similar requests, which has been overlooked by previous research. Addressing these gaps, this paper introduces a novel Vector database-assisted cloud-Edge collaborative LLM QoS Optimization (VELO) framework. Firstly, we propose the VELO framework, which ingeniously employs vector database to cache the results of some LLM requests at the edge to reduce the response time of subsequent similar requests. Diverging from direct optimization of the LLM, our VELO framework does not necessitate altering the internal structure of LLM and is broadly applicable to diverse LLMs. Subsequently, building upon the VELO framework, we formulate the QoS optimization problem as a Markov Decision Process (MDP) and devise an algorithm grounded in Multi-Agent Reinforcement Learning (MARL) to decide whether to request the LLM in the cloud or directly return the results from the vector database at the edge. Moreover, to enhance request feature extraction and expedite training, we refine the policy network of MARL and integrate expert demonstrations. Finally, we implement the proposed algorithm within a real edge system. Experimental findings confirm that our VELO framework substantially enhances user satisfaction by concurrently diminishing delay and resource consumption for edge users utilizing LLMs.
- Abstract(参考訳): LLM(Large Language Model)は、様々な領域で広く利用されている。
ほとんどのLCMデプロイメントは、クラウドデータセンタ内で発生し、相当な応答遅延が発生し、高いコストが発生するため、ネットワークエッジのQuality of Services(QoS)に影響を与える。
LLM要求結果をエッジに格納するためにベクトルデータベースキャッシュを活用することで、同様の要求に関連する応答遅延やコストを大幅に軽減することができる。
本稿では,Vectorデータベースを利用したクラウド-Edge協調LLM QoS最適化(VELO)フレームワークを提案する。
まずVELOフレームワークを提案する。このフレームワークはベクトルデータベースを用いて,いくつかのLCM要求の結果をエッジにキャッシュし,その後の類似要求の応答時間を短縮する。
LLMの直接最適化から切り離されたVELOフレームワークは,LLMの内部構造を変更する必要はなく,多様なLLMに適用可能である。
その後,VELO フレームワーク上に構築した QoS 最適化問題をマルコフ決定プロセス (MDP) として定式化し,マルチエージェント強化学習 (MARL) に基づくアルゴリズムを考案し,クラウド上で LLM を要求するか,エッジでベクトルデータベースから直接結果を返すかを決定する。
さらに、要求特徴抽出と訓練の迅速化を図るため、MARLのポリシーネットワークを改良し、専門家によるデモンストレーションを統合する。
最後に,提案アルゴリズムを実エッジシステムに実装する。
LLMを用いたエッジユーザの遅延とリソース消費を同時に低減することにより,VELOフレームワークがユーザ満足度を大幅に向上することを確認した。
関連論文リスト
- Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示す。
本稿では,テキストベースの生成IoT(GIoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - One Queue Is All You Need: Resolving Head-of-Line Blocking in Large Language Model Serving [2.9164564021428845]
大規模言語モデル(LLM)サービスのためのマルチモデルキュー管理フレームワークを提案する。
QLM は複数の LLM Serving Operations (LSOs) の動作をオーケストレーションし、HOL ブロックの削減と達成率の最大化を図っている。
実世界のLLMサービスデータセットを用いた異種GPUデバイスおよびモデルの評価では、QLMはSLO達成率を40-90%改善し、スループットを20-400%向上した。
論文 参考訳(メタデータ) (2024-06-05T21:17:34Z) - Parrot: Efficient Serving of LLM-based Applications with Semantic Variable [11.894203842968745]
Parrotは、LLMベースのアプリケーションのエンドツーエンドエクスペリエンスに焦点を当てたサービスシステムである。
Semantic Variableはリクエストのプロンプトで入出力変数に注釈を付け、複数のLLMリクエストを接続する際にデータパイプラインを生成する。
論文 参考訳(メタデータ) (2024-05-30T09:46:36Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
本稿では,LLMをリレーショナルクエリ内で実行する解析処理に対して,LLM(Large Language Models)推論を最適化する方法を示す。
私たちはこれらの最適化をApache Sparkで実装し、vLLMをバックエンドとして提供しています。
実データセット上の多様なLLMベースのクエリのベンチマークで、エンドツーエンドのレイテンシを最大4.4倍改善する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
本稿では,データ生成,モデルトレーニング,評価を橋渡しする新しいクローズドループシステムを提案する。
各ループ内で、MLLM-DataEngineはまず評価結果に基づいてモデルの弱点を分析する。
ターゲットとして,異なる種類のデータの比率を調整する適応型バッドケースサンプリングモジュールを提案する。
品質については、GPT-4を用いて、各データタイプで高品質なデータを生成する。
論文 参考訳(メタデータ) (2023-08-25T01:41:04Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
大規模言語モデル(LLM)は、最近、テキストを介してコンテキスト対応の応答を提供するという、印象的な能力を実証した。
この能力は、パターン補完に関連するシーケンシャルな意思決定タスクにおいて、妥当なソリューションを予測するために使われる可能性がある。
第一強化学習(RL)エージェントによって部分的に完了したタスクに対する解を提案するために,LLMのこの予測能力を利用するLaGRを紹介した。
論文 参考訳(メタデータ) (2023-08-21T02:07:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。