論文の概要: AdaSwitch: Adaptive Switching between Small and Large Agents for Effective Cloud-Local Collaborative Learning
- arxiv url: http://arxiv.org/abs/2410.13181v1
- Date: Thu, 17 Oct 2024 03:07:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:20:18.487876
- Title: AdaSwitch: Adaptive Switching between Small and Large Agents for Effective Cloud-Local Collaborative Learning
- Title(参考訳): AdaSwitch: クラウドローカルの効果的なコラボレーション学習のための,小規模エージェントと大規模エージェントの適応的な切り替え
- Authors: Hao Sun, Jiayi Wu, Hengyi Cai, Xiaochi Wei, Yue Feng, Bo Wang, Shuaiqiang Wang, Yan Zhang, Dawei Yin,
- Abstract要約: 本研究では,大規模クラウドベースLLMと小規模ローカルデプロイLLMの協調運用を容易にする新しいLCM利用パラダイムを提案する。
本フレームワークは,比較的小型のLLMをインスタンス化したローカルエージェントと,大型のLLMを搭載したクラウドエージェントの2つの主要モジュールから構成される。
この協調処理は、ローカルエージェントがエラーを内観的に識別し、クラウドエージェントから積極的に支援を求める適応機構によって実現される。
- 参考スコア(独自算出の注目度): 36.37717583840935
- License:
- Abstract: Recent advancements in large language models (LLMs) have been remarkable. Users face a choice between using cloud-based LLMs for generation quality and deploying local-based LLMs for lower computational cost. The former option is typically costly and inefficient, while the latter usually fails to deliver satisfactory performance for reasoning steps requiring deliberate thought processes. In this work, we propose a novel LLM utilization paradigm that facilitates the collaborative operation of large cloud-based LLMs and smaller local-deployed LLMs. Our framework comprises two primary modules: the local agent instantiated with a relatively smaller LLM, handling less complex reasoning steps, and the cloud agent equipped with a larger LLM, managing more intricate reasoning steps. This collaborative processing is enabled through an adaptive mechanism where the local agent introspectively identifies errors and proactively seeks assistance from the cloud agent, thereby effectively integrating the strengths of both locally-deployed and cloud-based LLMs, resulting in significant enhancements in task completion performance and efficiency. We evaluate AdaSwitch across 7 benchmarks, ranging from mathematical reasoning and complex question answering, using various types of LLMs to instantiate the local and cloud agents. The empirical results show that AdaSwitch effectively improves the performance of the local agent, and sometimes achieves competitive results compared to the cloud agent while utilizing much less computational overhead.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は目覚ましい。
ユーザは、生成品質にクラウドベースのLLMを使用することと、より低い計算コストにローカルベースのLLMをデプロイすることの選択肢に直面します。
前者の選択肢は一般的に費用がかかり非効率であるが、後者は通常、意図的な思考プロセスを必要とするステップを推論するために満足なパフォーマンスを提供するのに失敗する。
本研究では,大規模クラウドベースLLMと小規模ローカルデプロイLLMの協調運用を容易にする,新たなLCM利用パラダイムを提案する。
本フレームワークは,比較的小さなLCMでインスタンス化したローカルエージェントと,より複雑なLCMの処理を行うクラウドエージェントの2つの主要モジュールから構成される。
この協調処理は、ローカルエージェントがエラーをイントロスペクティブに識別し、クラウドエージェントからの援助を積極的に求め、ローカルにデプロイされたLLMとクラウドベースのLLMの両方の強度を効果的に統合し、タスク完了性能と効率を大幅に向上する適応機構によって実現される。
我々はAdaSwitchを7つのベンチマークで評価し、数学的推論から複雑な質問応答まで、様々なタイプのLCMを用いてローカルエージェントとクラウドエージェントをインスタンス化する。
実験の結果,AdaSwitchはローカルエージェントの性能を効果的に向上し,計算オーバーヘッドをはるかに少なくしながら,クラウドエージェントと比較して競合的な結果が得られることがわかった。
関連論文リスト
- CE-CoLLM: Efficient and Adaptive Large Language Models Through Cloud-Edge Collaboration [1.6021932740447968]
大規模言語モデル(LLM)は、エンドユーザに人間のような知性を提供することで、驚くべき成功を収めた。
LLMは高い計算資源を必要としており、様々な性能目標を満たすためにそれらをデプロイすることは困難である。
CE-CoLLMは,エッジのエンドユーザに対して,効率的かつ適応的なLLM推論をサポートする,新しいクラウドエッジコラボレーションフレームワークである。
論文 参考訳(メタデータ) (2024-11-05T06:00:27Z) - Efficient Hybrid Inference for LLMs: Reward-Based Token Modelling with Selective Cloud Assistance [0.0]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおける例外的な性能で知られている。
より小型の言語モデル(SLM)は、より低価格のエッジデバイスにデプロイできるが、より大きなデバイスの性能に匹敵する。
本稿では,両モデルの強みを生かした新しいハイブリッド推論手法を提案する。
論文 参考訳(メタデータ) (2024-09-15T15:12:45Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - VELO: A Vector Database-Assisted Cloud-Edge Collaborative LLM QoS Optimization Framework [10.716259527813522]
大規模言語モデル (LLM) は広く普及し、様々な領域で広く利用されている。
ほとんどのLDMデプロイメントは、クラウドデータセンタ内で発生し、相当な応答遅延と高いコストが発生する。
LLM要求結果をエッジに格納するためにベクトルデータベースキャッシュを活用することで、同様の要求に関連する応答遅延とコストを大幅に軽減することができる。
論文 参考訳(メタデータ) (2024-06-19T09:41:37Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - EnvGen: Generating and Adapting Environments via LLMs for Training Embodied Agents [65.38474102119181]
トレーニング環境を適応的に作成するフレームワークであるEnvGenを提案する。
我々は、LLM生成環境とLLM生成環境を混合した小さなRLエージェントを訓練する。
我々は、EnvGenで訓練された小さなRLエージェントが、GPT-4エージェントを含むSOTAメソッドより優れており、長い水平タスクをかなり高速に学習できることを発見した。
論文 参考訳(メタデータ) (2024-03-18T17:51:16Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。