論文の概要: Towards a multimodal framework for remote sensing image change retrieval and captioning
- arxiv url: http://arxiv.org/abs/2406.13424v1
- Date: Wed, 19 Jun 2024 10:30:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 20:12:53.157655
- Title: Towards a multimodal framework for remote sensing image change retrieval and captioning
- Title(参考訳): リモートセンシング画像変化検索とキャプションのためのマルチモーダルフレームワーク
- Authors: Roger Ferrod, Luigi Di Caro, Dino Ienco,
- Abstract要約: 本稿では,両時間RS画像ペアのための新しい基礎モデルを提案する。
コントラストエンコーダとキャプションデコーダを共同でトレーニングすることにより、両時間的変化検出の文脈でテキスト画像検索機能を付加する。
- 参考スコア(独自算出の注目度): 3.3488510654648453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, there has been increasing interest in multimodal applications that integrate text with other modalities, such as images, audio and video, to facilitate natural language interactions with multimodal AI systems. While applications involving standard modalities have been extensively explored, there is still a lack of investigation into specific data modalities such as remote sensing (RS) data. Despite the numerous potential applications of RS data, including environmental protection, disaster monitoring and land planning, available solutions are predominantly focused on specific tasks like classification, captioning and retrieval. These solutions often overlook the unique characteristics of RS data, such as its capability to systematically provide information on the same geographical areas over time. This ability enables continuous monitoring of changes in the underlying landscape. To address this gap, we propose a novel foundation model for bi-temporal RS image pairs, in the context of change detection analysis, leveraging Contrastive Learning and the LEVIR-CC dataset for both captioning and text-image retrieval. By jointly training a contrastive encoder and captioning decoder, our model add text-image retrieval capabilities, in the context of bi-temporal change detection, while maintaining captioning performances that are comparable to the state of the art. We release the source code and pretrained weights at: https://github.com/rogerferrod/RSICRC.
- Abstract(参考訳): 近年、マルチモーダルAIシステムとの自然言語インタラクションを容易にするために、画像、オーディオ、ビデオなどの他のモーダルとテキストを統合するマルチモーダルアプリケーションへの関心が高まっている。
標準モダリティを含むアプリケーションは広く研究されているが、リモートセンシング(RS)データなど、特定のデータモダリティについての調査は未だ行われていない。
環境保護、災害監視、土地計画など多くのRSデータの潜在的な応用にもかかわらず、利用可能なソリューションは主に分類、キャプション、検索のような特定のタスクに焦点を当てている。
これらのソリューションは、時間とともに同じ地理的領域に関する情報を体系的に提供できる機能など、RSデータのユニークな特徴を見落としていることが多い。
この機能は、基盤となるランドスケープの変化を継続的に監視することを可能にする。
このギャップに対処するために、コントラスト学習とLEVIR-CCデータセットを併用し、変化検出分析の文脈において、バイテンポラルRS画像ペアのための新しい基礎モデルを提案する。
コントラストエンコーダとキャプションデコーダを共同でトレーニングすることにより,両時間的変化検出の文脈でテキスト画像検索機能を付加すると同時に,最先端技術に匹敵するキャプション性能を維持できる。
ソースコードと事前訓練された重み付けを以下にリリースします。
関連論文リスト
- Multilingual Vision-Language Pre-training for the Remote Sensing Domain [4.118895088882213]
コントラスト言語-画像事前学習(CLIP)に基づく手法は、現在、リモートセンシングデータを含む視覚・言語タスクをサポートするために広く使われている。
本研究は,多言語CLIPモデルの微調整を探求する,リモートセンシング領域のための新しいビジョン・アンド・ランゲージモデルを提案する。
提案したモデルでは,Remote Sensing Multilingual CLIP (RS-M-CLIP) と名づけた。
論文 参考訳(メタデータ) (2024-10-30T18:13:11Z) - A$^{2}$-MAE: A spatial-temporal-spectral unified remote sensing pre-training method based on anchor-aware masked autoencoder [26.81539884309151]
リモートセンシング(RS)データは、重要な空間情報、時間情報、スペクトル情報を含む、複数の次元にわたる地球観測を提供する。
RSデータの特徴に合わせた様々な事前学習手法にもかかわらず、重要な制限は持続する: 空間、時間、スペクトル情報を単一の統一モデルに効果的に統合できないことである。
本研究では,異なる種類の画像と地理情報から固有の補完情報を活用し,事前学習期間中にマスク付きパッチを再構築するアンカー・アウェア・マスク付きオートエンコーダ手法(A$2-MAE)を提案する。
論文 参考訳(メタデータ) (2024-06-12T11:02:15Z) - Language Guided Domain Generalized Medical Image Segmentation [68.93124785575739]
単一ソースドメインの一般化は、より信頼性が高く一貫性のあるイメージセグメンテーションを現実の臨床環境にわたって約束する。
本稿では,テキストエンコーダ機能によって案内されるコントラスト学習機構を組み込むことで,テキスト情報を明確に活用する手法を提案する。
文献における既存手法に対して,本手法は良好な性能を発揮する。
論文 参考訳(メタデータ) (2024-04-01T17:48:15Z) - Improved Baselines for Data-efficient Perceptual Augmentation of LLMs [66.05826802808177]
コンピュータビジョンでは、画像キャプションや視覚的質問応答などの視覚言語タスクに、大きな言語モデル(LLM)を用いることができる。
複数のタスクにまたがる異なる対面機構を実験的に評価する。
異なるタスク間で(ほぼ)最適な結果をもたらす新しいインターフェース機構を同定し、トレーニング時間を4倍短縮する。
論文 参考訳(メタデータ) (2024-03-20T10:57:17Z) - Large Language Models for Captioning and Retrieving Remote Sensing
Images [4.499596985198142]
RS-CapRetはリモートセンシングタスクのためのVision and Languageメソッドである。
リモートセンシング画像の記述を生成し、テキスト記述から画像を取得することができる。
論文 参考訳(メタデータ) (2024-02-09T15:31:01Z) - Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection
to Image-Text Pre-Training [70.83385449872495]
映像モーメント検索(VMR)における視覚とテキストの相関
既存の方法は、視覚的およびテキスト的理解のために、個別の事前学習機能抽出器に依存している。
本稿では,映像モーメントの理解を促進するために,ビジュアルダイナミックインジェクション(Visual-Dynamic Injection, VDI)と呼ばれる汎用手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T19:29:05Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
視覚言語処理における自己教師あり学習は、画像とテキストのモダリティのセマンティックアライメントを利用する。
トレーニングと微調整の両方で利用できる場合、事前のイメージとレポートを明示的に説明します。
我々のアプローチはBioViL-Tと呼ばれ、テキストモデルと共同で訓練されたCNN-Transformerハイブリッドマルチイメージエンコーダを使用する。
論文 参考訳(メタデータ) (2023-01-11T16:35:33Z) - Retrieval-Augmented Transformer for Image Captioning [51.79146669195357]
我々は、kNNメモリを用いた画像キャプション手法を開発し、外部コーパスから知識を抽出して生成プロセスを支援する。
我々のアーキテクチャは、視覚的類似性に基づく知識検索と、識別可能なエンコーダと、トークンを予測するためにkNN拡張アテンション層を組み合わせる。
COCOデータセットで実施した実験結果は、明示的な外部メモリを利用することで、生成プロセスの助けとなり、キャプションの品質が向上することを示した。
論文 参考訳(メタデータ) (2022-07-26T19:35:49Z) - FiLMing Multimodal Sarcasm Detection with Attention [0.7340017786387767]
サルカスムの検出は、意図された意味がその表面的な意味によって示されるものと異なる自然言語表現を特定する。
本稿では,入力テキストと画像属性のコンテキスト不整合を組み込むために,RoBERTaモデルとコアテンション層を用いた新しいアーキテクチャを提案する。
提案手法は,Twitterのマルチモーダル検出データセットの6.14%のF1スコアにおいて,既存の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-09T06:33:29Z) - Cross-Modal Retrieval Augmentation for Multi-Modal Classification [61.5253261560224]
画像の非構造化外部知識源とそれに対応するキャプションを用いて視覚的質問応答を改善する。
まず,画像とキャプションを同一空間に埋め込むための新しいアライメントモデルを訓練し,画像検索の大幅な改善を実現する。
第2に、トレーニングされたアライメントモデルを用いた検索強化マルチモーダルトランスは、強いベースライン上でのVQAの結果を改善することを示す。
論文 参考訳(メタデータ) (2021-04-16T13:27:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。