Bipartite Bound Entanglement
- URL: http://arxiv.org/abs/2406.13491v1
- Date: Wed, 19 Jun 2024 12:23:34 GMT
- Title: Bipartite Bound Entanglement
- Authors: Beatrix C Hiesmayr, Christopher Popp, Tobias C. Sutter,
- Abstract summary: Bound entanglement is a special form of quantum entanglement that cannot be used for distillation.
We focus on systems of finite dimensions, an area of high relevance for many quantum information processing tasks.
The article illuminates areas where our understanding of bound entangled states, particularly their detection and characterization, is yet to be fully developed.
- Score: 0.016385815610837167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bound entanglement is a special form of quantum entanglement that cannot be used for distillation, i.e., the local transformation of copies of arbitrarily entangled states into a smaller number of approximately maximally entangled states. Implying an inherent irreversibility of quantum resources, this phenomenon highlights the gaps in our current theory of entanglement. This review provides a comprehensive exploration of the key findings on bipartite bound entanglement. We focus on systems of finite dimensions, an area of high relevance for many quantum information processing tasks. We elucidate the properties of bound entanglement and its interconnections with various facets of quantum information theory and quantum information processing. The article illuminates areas where our understanding of bound entangled states, particularly their detection and characterization, is yet to be fully developed. By highlighting the need for further research into this phenomenon and underscoring relevant open questions, this article invites researchers to unravel its relevance for our understanding of entanglement in Nature and how this resource can most effectively be used for applications in quantum technology.
Related papers
- Hyperfine Structure of Quantum Entanglement [8.203995433574182]
We introduce the textithyperfine structure of entanglement, which dissects entanglement contours known as the fine structure into particle-number cumulants.
Our findings suggest experimental accessibility, offering fresh insights into quantum entanglement across physical systems.
arXiv Detail & Related papers (2023-11-03T15:49:56Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A Compendious Review of Majorization-Based Resource Theories: Quantum
Information and Quantum Thermodynamics [0.0]
We aim to augment our comprehension of genuine quantum phenomena manifested across diverse technological applications.
We emphasize the underlying similarities shared by various resources, including bipartite quantum entanglement, quantum coherence, and superposition.
arXiv Detail & Related papers (2023-06-20T13:02:52Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Holographic entanglement in spin network states: a focused review [0.38073142980732994]
We focus on spin network states dual to finite regions of space, represented as entanglement graphs in the group field theory approach to quantum gravity.
In particular, spin network states can be interpreted as maps from bulk to boundary, whose holographic behaviour increases with the inhomogeneity of their geometric data.
We review how exceeding a certain threshold of bulk entanglement leads to the emergence of a black hole-like region, revealing intriguing perspectives for quantum cosmology.
arXiv Detail & Related papers (2022-02-10T16:06:45Z) - Genuine multipartite entanglement and quantum coherence in an
electron-positron system: Relativistic covariance [117.44028458220427]
We analyze the behavior of both genuine multipartite entanglement and quantum coherence under Lorentz boosts.
A given combination of these quantum resources is shown to form a Lorentz invariant.
arXiv Detail & Related papers (2021-11-26T17:22:59Z) - Extendibility limits the performance of quantum processors [5.949779668853555]
We introduce the resource theory of unextendibility, which is associated with the inability of extending quantum entanglement in a given quantum state to multiple parties.
We derive non-asymptotic, upper bounds on the rate at which quantum communication or entanglement preservation is possible by utilizing an arbitrary quantum channel a finite number of times.
We show that the bounds obtained are significantly tighter than previously known bounds for quantum communication over both the depolarizing and erasure channels.
arXiv Detail & Related papers (2021-08-06T14:17:08Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.