Bipartite Bound Entanglement
- URL: http://arxiv.org/abs/2406.13491v1
- Date: Wed, 19 Jun 2024 12:23:34 GMT
- Title: Bipartite Bound Entanglement
- Authors: Beatrix C Hiesmayr, Christopher Popp, Tobias C. Sutter,
- Abstract summary: Bound entanglement is a special form of quantum entanglement that cannot be used for distillation.
We focus on systems of finite dimensions, an area of high relevance for many quantum information processing tasks.
The article illuminates areas where our understanding of bound entangled states, particularly their detection and characterization, is yet to be fully developed.
- Score: 0.016385815610837167
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bound entanglement is a special form of quantum entanglement that cannot be used for distillation, i.e., the local transformation of copies of arbitrarily entangled states into a smaller number of approximately maximally entangled states. Implying an inherent irreversibility of quantum resources, this phenomenon highlights the gaps in our current theory of entanglement. This review provides a comprehensive exploration of the key findings on bipartite bound entanglement. We focus on systems of finite dimensions, an area of high relevance for many quantum information processing tasks. We elucidate the properties of bound entanglement and its interconnections with various facets of quantum information theory and quantum information processing. The article illuminates areas where our understanding of bound entangled states, particularly their detection and characterization, is yet to be fully developed. By highlighting the need for further research into this phenomenon and underscoring relevant open questions, this article invites researchers to unravel its relevance for our understanding of entanglement in Nature and how this resource can most effectively be used for applications in quantum technology.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.