Quantifying High-Order Interdependencies in Entangled Quantum States
- URL: http://arxiv.org/abs/2310.03681v1
- Date: Thu, 5 Oct 2023 17:00:13 GMT
- Title: Quantifying High-Order Interdependencies in Entangled Quantum States
- Authors: Marco Alberto Javarone, Fernando E. Rosas, Paolo Facchi, Saverio
Pascazio, Sebastiano Stramaglia
- Abstract summary: We introduce the Q-information: an information-theoretic measure capable of distinguishing quantum states dominated by synergy or redundancy.
We show that quantum systems need at least four variables to exhibit high-order properties.
Overall, the Q-information sheds light on novel aspects of the internal organisation of quantum systems and their time evolution.
- Score: 43.70611649100949
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here, we leverage recent advances in information theory to develop a novel
method to characterise the dominant character of the high-order dependencies of
quantum systems. To this end, we introduce the Q-information: an
information-theoretic measure capable of distinguishing quantum states
dominated by synergy or redundancy. We illustrate the measure by investigating
the properties of paradigmatic entangled Qubit states and find that -- in
contrast to classical systems -- quantum systems need at least four variables
to exhibit high-order properties. Furthermore, our results reveal that unitary
evolution can radically affect the internal information organisation in a way
that strongly depends on the corresponding Hamiltonian. Overall, the
Q-information sheds light on novel aspects of the internal organisation of
quantum systems and their time evolution, opening new avenues for studying
several quantum phenomena and related technologies.
Related papers
- Information scrambling -- a quantum thermodynamic perspective [0.0]
Recent advances in quantum information science have shed light on the intricate dynamics of quantum many-body systems.
This perspective aims at synthesizing key findings from several pivotal studies and exploring various aspects of quantum scrambling.
arXiv Detail & Related papers (2024-01-10T18:15:09Z) - An operational definition of quantum information scrambling [0.0]
Quantum information scrambling (QIS) is a characteristic feature of several quantum systems.
We propose a novel and computationally efficient QIS quantifier based on a formulation of QIS in terms of quantum state discrimination.
We show that the optimal guessing probability, which reflects the degree of QIS induced by an isometric quantum evolution, is directly connected to the accessible min-information.
arXiv Detail & Related papers (2023-12-18T19:00:01Z) - Does Quantum Mechanics Breed Larger, More Intricate Quantum Theories?
The Case for Experience-Centric Quantum Theory and the Interactome of Quantum
Theories [0.0]
We show that the recently proposed experience-centric quantum theory (ECQT) is a larger and richer theory of quantum behaviors.
ECQT allows the quantum information of the closed quantum system's developed state history to continually contribute to defining manybody interactions.
The interplay of unitarity and non-Markovianity in ECQT brings about a host of diverse behavioral phases.
arXiv Detail & Related papers (2023-08-04T16:33:24Z) - Quantum reservoir probing: an inverse paradigm of quantum reservoir computing for exploring quantum many-body physics [0.0]
This study proposes a reciprocal research direction: probing quantum systems themselves through their information processing performance.
Building upon this concept, here we develop quantum reservoir probing (QRP), an inverse extension of the Quantum Reservoir Computing (QRC) paradigm.
Unifying quantum information and quantum matter, the QRP holds great promise as a potent tool for exploring various aspects of quantum many-body physics.
arXiv Detail & Related papers (2023-08-02T01:26:36Z) - Thermodynamics of quantum trajectories on a quantum computer [0.0]
Open-system dynamics are simulated on a quantum computer by coupling a system of interest to ancilla.
We show how to control the dynamics of the open system in order to enhance the probability of quantum trajectories with desired properties.
arXiv Detail & Related papers (2023-01-17T19:00:03Z) - Tracing Information Flow from Open Quantum Systems [52.77024349608834]
We use photons in a waveguide array to implement a quantum simulation of the coupling of a qubit with a low-dimensional discrete environment.
Using the trace distance between quantum states as a measure of information, we analyze different types of information transfer.
arXiv Detail & Related papers (2021-03-22T16:38:31Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.