EfficientCD: A New Strategy For Change Detection Based With Bi-temporal Layers Exchanged
- URL: http://arxiv.org/abs/2407.15999v1
- Date: Mon, 22 Jul 2024 19:11:50 GMT
- Title: EfficientCD: A New Strategy For Change Detection Based With Bi-temporal Layers Exchanged
- Authors: Sijun Dong, Yuwei Zhu, Geng Chen, Xiaoliang Meng,
- Abstract summary: We propose a novel deep learning framework named EfficientCD for remote sensing image change detection.
The framework employs EfficientNet as its backbone network for feature extraction.
The EfficientCD has been experimentally validated on four remote sensing datasets.
- Score: 3.3885253104046993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the widespread application of remote sensing technology in environmental monitoring, the demand for efficient and accurate remote sensing image change detection (CD) for natural environments is growing. We propose a novel deep learning framework named EfficientCD, specifically designed for remote sensing image change detection. The framework employs EfficientNet as its backbone network for feature extraction. To enhance the information exchange between bi-temporal image feature maps, we have designed a new Feature Pyramid Network module targeted at remote sensing change detection, named ChangeFPN. Additionally, to make full use of the multi-level feature maps in the decoding stage, we have developed a layer-by-layer feature upsampling module combined with Euclidean distance to improve feature fusion and reconstruction during the decoding stage. The EfficientCD has been experimentally validated on four remote sensing datasets: LEVIR-CD, SYSU-CD, CLCD, and WHUCD. The experimental results demonstrate that EfficientCD exhibits outstanding performance in change detection accuracy. The code and pretrained models will be released at https://github.com/dyzy41/mmrscd.
Related papers
- LCD-Net: A Lightweight Remote Sensing Change Detection Network Combining Feature Fusion and Gating Mechanism [6.5655751924536006]
Remote sensing image change detection (RSCD) is crucial for monitoring dynamic surface changes.
Traditional CNN-based methods suffer from high computational complexity and large parameter counts.
We propose a lightweight Change Detection Network (LCD-Net) that reduces model size and computational cost while maintaining high detection performance.
arXiv Detail & Related papers (2024-10-14T10:33:30Z) - DDLNet: Boosting Remote Sensing Change Detection with Dual-Domain Learning [5.932234366793244]
Change sensing (RSCD) aims to identify the changes of interest in a region by analyzing multi-temporal remote sensing images.
Existing RSCD methods are devoted to contextual modeling in the spatial domain to enhance the changes of interest.
We propose DNet, a RSCD network based on dual-domain learning (i.e. frequency and spatial domains)
arXiv Detail & Related papers (2024-06-19T14:54:09Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Siamese Meets Diffusion Network: SMDNet for Enhanced Change Detection in
High-Resolution RS Imagery [7.767708235606408]
We propose a new network, Siamese-U2Net Feature Differential Meets Network (SMDNet)
This network combines the Siam-U2Net Feature Differential (SU-FDE) and the denoising diffusion implicit model to improve the accuracy of image edge change detection.
Our method's combination of feature extraction and diffusion models demonstrates effectiveness in change detection in remote sensing images.
arXiv Detail & Related papers (2024-01-17T16:48:55Z) - Exchanging Dual Encoder-Decoder: A New Strategy for Change Detection
with Semantic Guidance and Spatial Localization [10.059696915598392]
We propose a new strategy with an exchanging dual encoder-decoder structure for binary change detection with semantic guidance and spatial localization.
We build a binary change detection model based on this strategy, and then validate and compare it with 18 state-of-the-art change detection methods on six datasets.
arXiv Detail & Related papers (2023-11-19T11:30:43Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
arXiv Detail & Related papers (2023-10-22T07:42:19Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
Remote Sensing Change Detection (RS-CD) aims to detect relevant changes from Multi-Temporal Remote Sensing Images (MT-RSIs)
The performance of existing RS-CD methods is attributed to training on large annotated datasets.
This paper proposes an unsupervised CD method based on deep metric learning that can deal with both of these issues.
arXiv Detail & Related papers (2023-03-16T17:52:45Z) - Revisiting Consistency Regularization for Semi-supervised Change
Detection in Remote Sensing Images [60.89777029184023]
We propose a semi-supervised CD model in which we formulate an unsupervised CD loss in addition to the supervised Cross-Entropy (CE) loss.
Experiments conducted on two publicly available CD datasets show that the proposed semi-supervised CD method can reach closer to the performance of supervised CD.
arXiv Detail & Related papers (2022-04-18T17:59:01Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.