ObscurePrompt: Jailbreaking Large Language Models via Obscure Input
- URL: http://arxiv.org/abs/2406.13662v1
- Date: Wed, 19 Jun 2024 16:09:58 GMT
- Title: ObscurePrompt: Jailbreaking Large Language Models via Obscure Input
- Authors: Yue Huang, Jingyu Tang, Dongping Chen, Bingda Tang, Yao Wan, Lichao Sun, Xiangliang Zhang,
- Abstract summary: We introduce a straightforward and novel method, named ObscurePrompt, for jailbreaking LLMs.
We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.
Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
- Score: 32.00508793605316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Large Language Models (LLMs) have garnered significant attention for their exceptional natural language processing capabilities. However, concerns about their trustworthiness remain unresolved, particularly in addressing "jailbreaking" attacks on aligned LLMs. Previous research predominantly relies on scenarios with white-box LLMs or specific and fixed prompt templates, which are often impractical and lack broad applicability. In this paper, we introduce a straightforward and novel method, named ObscurePrompt, for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data. Specifically, we first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary. ObscurePrompt starts with constructing a base prompt that integrates well-known jailbreaking techniques. Powerful LLMs are then utilized to obscure the original prompt through iterative transformations, aiming to bolster the attack's robustness. Comprehensive experiments show that our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms. We believe that our work can offer fresh insights for future research on enhancing LLM alignment.
Related papers
- A Domain-Based Taxonomy of Jailbreak Vulnerabilities in Large Language Models [6.946931840176725]
This work specifically focuses on the challenge of jailbreak vulnerabilities.
It introduces a novel taxonomy of jailbreak attacks grounded in the training domains of large language models.
arXiv Detail & Related papers (2025-04-07T12:05:16Z) - CCJA: Context-Coherent Jailbreak Attack for Aligned Large Language Models [18.06388944779541]
"jailbreaking" is the use of large language models to trigger unintended behaviors.
We propose a novel method to balance the jailbreak attack success rate with semantic coherence.
Our method is superior to state-of-the-art baselines in attack effectiveness.
arXiv Detail & Related papers (2025-02-17T02:49:26Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - How Alignment and Jailbreak Work: Explain LLM Safety through Intermediate Hidden States [65.45603614354329]
Large language models (LLMs) rely on safety alignment to avoid responding to malicious user inputs.
Jailbreak can circumvent safety guardrails, resulting in LLMs generating harmful content.
We employ weak classifiers to explain LLM safety through the intermediate hidden states.
arXiv Detail & Related papers (2024-06-09T05:04:37Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
This paper introduces the Bi-Modal Adversarial Prompt Attack (BAP), which executes jailbreaks by optimizing textual and visual prompts cohesively.
In particular, we utilize a large language model to analyze jailbreak failures and employ chain-of-thought reasoning to refine textual prompts.
arXiv Detail & Related papers (2024-06-06T13:00:42Z) - Efficient LLM-Jailbreaking by Introducing Visual Modality [28.925716670778076]
This paper focuses on jailbreaking attacks against large language models (LLMs)
Our approach begins by constructing a multimodal large language model (MLLM) through the incorporation of a visual module into the target LLM.
We convert the embJS into text space to facilitate the jailbreaking of the target LLM.
arXiv Detail & Related papers (2024-05-30T12:50:32Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
Large language models (LLMs) are increasingly being adopted in a wide range of real-world applications.
Recent studies have shown that LLMs are vulnerable to deliberately crafted adversarial prompts.
We propose a novel defense method termed textbfLayer-specific textbfEditing (LED) to enhance the resilience of LLMs against jailbreak attacks.
arXiv Detail & Related papers (2024-05-28T13:26:12Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
We propose a novel black-box jailbreak framework for automated red teaming of Large language models.
We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs.
arXiv Detail & Related papers (2024-03-13T11:16:43Z) - Defending LLMs against Jailbreaking Attacks via Backtranslation [61.878363293735624]
We propose a new method for defending LLMs against jailbreaking attacks by backtranslation''
The inferred prompt is called the backtranslated prompt which tends to reveal the actual intent of the original prompt.
We empirically demonstrate that our defense significantly outperforms the baselines.
arXiv Detail & Related papers (2024-02-26T10:03:33Z) - Leveraging the Context through Multi-Round Interactions for Jailbreaking Attacks [55.603893267803265]
Large Language Models (LLMs) are susceptible to Jailbreaking attacks.
Jailbreaking attacks aim to extract harmful information by subtly modifying the attack query.
We focus on a new attack form, called Contextual Interaction Attack.
arXiv Detail & Related papers (2024-02-14T13:45:19Z) - Rethinking Jailbreaking through the Lens of Representation Engineering [45.70565305714579]
The recent surge in jailbreaking methods has revealed the vulnerability of Large Language Models (LLMs) to malicious inputs.
This study investigates the vulnerability of safety-aligned LLMs by uncovering specific activity patterns.
arXiv Detail & Related papers (2024-01-12T00:50:04Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
Large language models (LLMs) are vulnerable to adversarial jailbreaks.
We propose an algorithm that generates semantic jailbreaks with only black-box access to an LLM.
arXiv Detail & Related papers (2023-10-12T15:38:28Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.