Concept Drift Visualization of SVM with Shifting Window
- URL: http://arxiv.org/abs/2406.13754v1
- Date: Wed, 19 Jun 2024 18:12:02 GMT
- Title: Concept Drift Visualization of SVM with Shifting Window
- Authors: Honorius Galmeanu, Razvan Andonie,
- Abstract summary: In machine learning, concept drift is an evolution of information that invalidates the current data model.
We propose a novel visualization model based on parallel coordinates, denoted as parallel histograms through time.
We show how these diagrams can be used to explain the decision made by the machine learning model in choosing the drift point.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In machine learning, concept drift is an evolution of information that invalidates the current data model. It happens when the statistical properties of the input data change over time in unforeseen ways. Concept drift detection is crucial when dealing with dynamically changing data. Its visualization can bring valuable insight into the data dynamics, especially for multidimensional data, and is related to visual knowledge discovery. We propose a novel visualization model based on parallel coordinates, denoted as parallel histograms through time. Our model represents histograms of feature distributions for successive time-shifted windows. The drift is shown as variations of these histograms, obtained by connecting the means of the distribution for successive time windows. We show how these diagrams can be used to explain the decision made by the machine learning model in choosing the drift point. By isolating the drift at the edges of successive time windows, there will be none (or reduced) drift within the adjacent windows. We illustrate this concept on both synthetic and real datasets. In our experiments, we use an incremental/decremental SVM with shifting window, introduced by us in previous work. With our proposed technique, in addition to detect the presence of concept drift, we can also depict it. This information can be further used to explain the change. mental results, opening the possibility for further investigations.
Related papers
- Exploring the Evolution of Hidden Activations with Live-Update Visualization [12.377279207342735]
We introduce SentryCam, an automated, real-time visualization tool that reveals the progression of hidden representations during training.
Our results show that this visualization offers a more comprehensive view of the learning dynamics compared to basic metrics.
SentryCam could facilitate detailed analysis such as task transfer and catastrophic forgetting to a continual learning setting.
arXiv Detail & Related papers (2024-05-24T01:23:20Z) - Methods for Generating Drift in Text Streams [49.3179290313959]
Concept drift is a frequent phenomenon in real-world datasets and corresponds to changes in data distribution over time.
This paper provides four textual drift generation methods to ease the production of datasets with labeled drifts.
Results show that all methods have their performance degraded right after the drifts, and the incremental SVM is the fastest to run and recover the previous performance levels.
arXiv Detail & Related papers (2024-03-18T23:48:33Z) - Premonition: Using Generative Models to Preempt Future Data Changes in
Continual Learning [63.850451635362425]
Continual learning requires a model to adapt to ongoing changes in the data distribution.
We show that the combination of a large language model and an image generation model can similarly provide useful premonitions.
We find that the backbone of our pre-trained networks can learn representations useful for the downstream continual learning problem.
arXiv Detail & Related papers (2024-03-12T06:29:54Z) - Cohere3D: Exploiting Temporal Coherence for Unsupervised Representation
Learning of Vision-based Autonomous Driving [73.3702076688159]
We propose a novel contrastive learning algorithm, Cohere3D, to learn coherent instance representations in a long-term input sequence.
We evaluate our algorithm by finetuning the pretrained model on various downstream perception, prediction, and planning tasks.
arXiv Detail & Related papers (2024-02-23T19:43:01Z) - A Remark on Concept Drift for Dependent Data [7.0072935721154614]
We show that the temporal dependencies are strongly influencing the sampling process.
In particular, we show that the notion of stationarity is not suited for this setup and discuss alternatives.
arXiv Detail & Related papers (2023-12-15T21:11:46Z) - Time-Varying Propensity Score to Bridge the Gap between the Past and Present [104.46387765330142]
We introduce a time-varying propensity score that can detect gradual shifts in the distribution of data.
We demonstrate different ways of implementing it and evaluate it on a variety of problems.
arXiv Detail & Related papers (2022-10-04T07:21:49Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Visualising Deep Network's Time-Series Representations [93.73198973454944]
Despite the popularisation of machine learning models, more often than not they still operate as black boxes with no insight into what is happening inside the model.
In this paper, a method that addresses that issue is proposed, with a focus on visualising multi-dimensional time-series data.
Experiments on a high-frequency stock market dataset show that the method provides fast and discernible visualisations.
arXiv Detail & Related papers (2021-03-12T09:53:34Z) - Drift Estimation with Graphical Models [0.0]
We make use of graphical models to elicit the visible structure of the data and we infer from there changes in the hidden context.
The paper evaluate the method with real world data on the Australian Electric market.
arXiv Detail & Related papers (2021-02-02T12:24:34Z) - Deep Graph Convolutional Networks for Wind Speed Prediction [4.644923443649426]
We introduce new models for wind speed prediction based on graph convolutional networks (GCNs)
We perform experiments on real datasets collected from weather stations located in cities in Denmark and the Netherlands.
arXiv Detail & Related papers (2021-01-25T12:22:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.