論文の概要: Allocation Requires Prediction Only if Inequality Is Low
- arxiv url: http://arxiv.org/abs/2406.13882v1
- Date: Wed, 19 Jun 2024 23:23:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 18:06:06.758359
- Title: Allocation Requires Prediction Only if Inequality Is Low
- Title(参考訳): アロケーションは不平等が低い場合にのみ予測を必要とする
- Authors: Ali Shirali, Rediet Abebe, Moritz Hardt,
- Abstract要約: 本研究では,個人がより大きなユニットに属している環境での予測に基づくアロケーションの有効性を評価する。
予測に基づくアロケーションは,ユニット間の不平等が低く,介入予算が高い場合にのみ,ベースライン手法よりも優れることがわかった。
- 参考スコア(独自算出の注目度): 24.57131078538418
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Algorithmic predictions are emerging as a promising solution concept for efficiently allocating societal resources. Fueling their use is an underlying assumption that such systems are necessary to identify individuals for interventions. We propose a principled framework for assessing this assumption: Using a simple mathematical model, we evaluate the efficacy of prediction-based allocations in settings where individuals belong to larger units such as hospitals, neighborhoods, or schools. We find that prediction-based allocations outperform baseline methods using aggregate unit-level statistics only when between-unit inequality is low and the intervention budget is high. Our results hold for a wide range of settings for the price of prediction, treatment effect heterogeneity, and unit-level statistics' learnability. Combined, we highlight the potential limits to improving the efficacy of interventions through prediction.
- Abstract(参考訳): アルゴリズムによる予測は、社会的資源を効率的に割り当てるための、有望な解決策として浮上している。
それらの使用を加速させることは、介入する個人を特定するのにそのようなシステムが不可欠である、という前提である。
本稿では, シンプルな数学的モデルを用いて, 個人が病院, 近所, 学校などの大規模ユニットに属している環境で, 予測に基づくアロケーションの有効性を評価する。
予測に基づくアロケーションは,単位間の不平等が低く,介入予算が高い場合にのみ,集約単位レベルの統計を用いたベースライン手法よりも優れていることがわかった。
その結果,予測値,処理効果の不均一性,および単位レベルの統計学の学習可能性について,幅広い設定が得られた。
組み合わせることで、予測による介入の有効性向上の潜在的な限界が強調される。
関連論文リスト
- Weighted Aggregation of Conformity Scores for Classification [9.559062601251464]
コンフォーマル予測は、有効なカバレッジ保証を備えた予測セットを構築するための強力なフレームワークである。
本稿では,共形予測器の性能向上のために,複数のスコア関数を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-14T14:58:03Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
実際には、因果研究者は先験を念頭において1つの結果を持っていない。
政府支援の社会福祉プログラムでは、政策立案者は貧困の多次元的性質を理解するために多くの成果を集めている。
本稿では、最適政策学習の文脈において、複数の結果に対するデータ駆動型次元性推論手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T08:16:30Z) - Targeted Machine Learning for Average Causal Effect Estimation Using the
Front-Door Functional [3.0232957374216953]
結果に対する治療の平均因果効果(ACE)を評価することは、しばしば観察研究における要因の相違によって引き起こされる課題を克服することを伴う。
本稿では,目標最小損失推定理論に基づいて,正面基準の新たな推定手法を提案する。
本研究では,早期学業成績が今後の年収に与える影響を明らかにするために,これらの推定装置の適用性を示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - The Relative Value of Prediction in Algorithmic Decision Making [0.0]
アルゴリズムによる意思決定における予測の相対的な価値は何か?
我々は,拡張アクセスの相対値を決定する,単純でシャープな条件を同定する。
本稿では,これらの理論的洞察を用いて,アルゴリズムによる意思決定システムの設計を現実的に導く方法について述べる。
論文 参考訳(メタデータ) (2023-12-13T20:52:45Z) - Distribution-Free Statistical Dispersion Control for Societal
Applications [16.43522470711466]
モデル性能に関する有限サンプル統計保証は、責任ある機械学習において重要な要素である。
これまでの研究は主に、予測器の期待損失と、個々の予測が特定の範囲で損失値をもたらす確率のどちらかを束縛することに焦点を当ててきた。
我々は,従来よりもはるかにリッチな統計関数のクラスを扱える,シンプルで柔軟なフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-25T00:31:55Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Fairness Measures for Regression via Probabilistic Classification [0.0]
アルゴリズムフェアネス(英: Algorithmic Fairness)とは、機械学習アルゴリズムが最適化できる定量尺度として、公平性や合理的な扱いなどの概念を表現することである。
これは、分類公正度尺度が結果の比率を比較することで容易に計算され、同じ資格を持つ男性の割合が適格女性として選択されるような行動につながるためである。
しかし、そのような尺度は、価格や支払いの割当といった問題に対する継続的な回帰設定を一般化することは、計算的に困難である。
回帰設定では, 保護属性の異なる条件確率の比率として, 独立性, 分離性, 充足性基準の抽出可能な近似を導入する。
論文 参考訳(メタデータ) (2020-01-16T21:53:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。