Reasoning Like a Doctor: Improving Medical Dialogue Systems via Diagnostic Reasoning Process Alignment
- URL: http://arxiv.org/abs/2406.13934v1
- Date: Thu, 20 Jun 2024 02:02:53 GMT
- Title: Reasoning Like a Doctor: Improving Medical Dialogue Systems via Diagnostic Reasoning Process Alignment
- Authors: Kaishuai Xu, Yi Cheng, Wenjun Hou, Qiaoyu Tan, Wenjie Li,
- Abstract summary: Our work aims to build a medical dialogue system that aligns with clinicians' diagnostic reasoning processes.
We propose a novel framework, Emulation, designed to generate an appropriate response.
Our framework furnishes clear explanations for the generated responses, enhancing its transparency in medical consultations.
- Score: 14.563188427409958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical dialogue systems have attracted significant attention for their potential to act as medical assistants. Enabling these medical systems to emulate clinicians' diagnostic reasoning process has been the long-standing research focus. Previous studies rudimentarily realized the simulation of clinicians' diagnostic process by fine-tuning language models on high-quality dialogue datasets. Nonetheless, they overly focus on the outcomes of the clinician's reasoning process while ignoring their internal thought processes and alignment with clinician preferences. Our work aims to build a medical dialogue system that aligns with clinicians' diagnostic reasoning processes. We propose a novel framework, Emulation, designed to generate an appropriate response that relies on abductive and deductive diagnostic reasoning analyses and aligns with clinician preferences through thought process modeling. Experimental results on two datasets confirm the efficacy of Emulation. Crucially, our framework furnishes clear explanations for the generated responses, enhancing its transparency in medical consultations.
Related papers
- A Two-Stage Proactive Dialogue Generator for Efficient Clinical Information Collection Using Large Language Model [0.6926413609535759]
We propose a diagnostic dialogue system to automate the patient information collection procedure.
By exploiting medical history and conversation logic, our conversation agents can pose multi-round clinical queries.
Our experimental results on a real-world medical conversation dataset show that our model can generate clinical queries that mimic the conversation style of real doctors.
arXiv Detail & Related papers (2024-10-02T19:32:11Z) - RuleAlign: Making Large Language Models Better Physicians with Diagnostic Rule Alignment [54.91736546490813]
We introduce the RuleAlign framework, designed to align Large Language Models with specific diagnostic rules.
We develop a medical dialogue dataset comprising rule-based communications between patients and physicians.
Experimental results demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-08-22T17:44:40Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
This study presents a LLM-based diagnostic system that enhances planning capabilities by emulating doctors.
By utilizing real patient electronic medical record data, we constructed simulated dialogues between virtual patients and doctors.
arXiv Detail & Related papers (2024-04-04T06:16:35Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Medical Dialogue Generation via Intuitive-then-Analytical Differential
Diagnosis [14.17497921394565]
We propose a medical dialogue generation framework with the Intuitive-then-Analytic Differential Diagnosis (IADDx)
Our method starts with a differential diagnosis via retrieval-based intuitive association and subsequently refines it through a graph-enhanced analytic procedure.
Experimental results on two datasets validate the efficacy of our method.
arXiv Detail & Related papers (2024-01-12T12:35:19Z) - Large Language Models are Clinical Reasoners: Reasoning-Aware Diagnosis Framework with Prompt-Generated Rationales [15.362903610463285]
We present a "reasoning-aware" diagnosis framework that rationalizes the diagnostic process via prompt-based learning.
We propose a novel set of criteria for evaluating machine-generated rationales' potential for real-world clinical settings.
arXiv Detail & Related papers (2023-12-12T16:14:45Z) - Towards Trustworthy Automatic Diagnosis Systems by Emulating Doctors'
Reasoning with Deep Reinforcement Learning [2.314562406457073]
We propose to model the evidence acquisition and automatic diagnosis tasks using a deep reinforcement learning framework.
We show that our approach performs better than existing models while maintaining competitive pathology prediction accuracy.
arXiv Detail & Related papers (2022-10-13T17:17:17Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridge is a visual analytics tool that seamlessly incorporates machine learning explanations into clinicians' decision-making workflow.
We identified three key challenges, including clinicians' unfamiliarity with ML features, lack of contextual information, and the need for cohort-level evidence.
We demonstrated the effectiveness of VBridge through two case studies and expert interviews with four clinicians.
arXiv Detail & Related papers (2021-08-04T17:34:13Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
Two key characteristics are relevant for medical dialogue generation: patient states and physician actions.
We propose an end-to-end variational reasoning approach to medical dialogue generation.
A physician policy network composed of an action-classifier and two reasoning detectors is proposed for augmented reasoning ability.
arXiv Detail & Related papers (2021-05-13T04:14:35Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
We build and release a large-scale high-quality Medical Dialogue dataset related to 12 types of common Gastrointestinal diseases named MedDG.
We propose two kinds of medical dialogue tasks based on MedDG dataset. One is the next entity prediction and the other is the doctor response generation.
Experimental results show that the pre-train language models and other baselines struggle on both tasks with poor performance in our dataset.
arXiv Detail & Related papers (2020-10-15T03:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.