論文の概要: SSAD: Self-supervised Auxiliary Detection Framework for Panoramic X-ray based Dental Disease Diagnosis
- arxiv url: http://arxiv.org/abs/2406.13963v1
- Date: Thu, 20 Jun 2024 03:09:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 17:27:03.375427
- Title: SSAD: Self-supervised Auxiliary Detection Framework for Panoramic X-ray based Dental Disease Diagnosis
- Title(参考訳): SSAD:パノラマX線を用いた歯科疾患診断のための自己管理補助フレームワーク
- Authors: Zijian Cai, Xinquan Yang, Xuguang Li, Xiaoling Luo, Xuechen Li, Linlin Shen, He Meng, Yongqiang Deng,
- Abstract要約: SSADフレームワークはプラグアンドプレイであり、あらゆる検出器と互換性がある。
SSADフレームワークは、主流のオブジェクト検出方法やSSLメソッドと比較して最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 34.18685561597102
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Panoramic X-ray is a simple and effective tool for diagnosing dental diseases in clinical practice. When deep learning models are developed to assist dentist in interpreting panoramic X-rays, most of their performance suffers from the limited annotated data, which requires dentist's expertise and a lot of time cost. Although self-supervised learning (SSL) has been proposed to address this challenge, the two-stage process of pretraining and fine-tuning requires even more training time and computational resources. In this paper, we present a self-supervised auxiliary detection (SSAD) framework, which is plug-and-play and compatible with any detectors. It consists of a reconstruction branch and a detection branch. Both branches are trained simultaneously, sharing the same encoder, without the need for finetuning. The reconstruction branch learns to restore the tooth texture of healthy or diseased teeth, while the detection branch utilizes these learned features for diagnosis. To enhance the encoder's ability to capture fine-grained features, we incorporate the image encoder of SAM to construct a texture consistency (TC) loss, which extracts image embedding from the input and output of reconstruction branch, and then enforces both embedding into the same feature space. Extensive experiments on the public DENTEX dataset through three detection tasks demonstrate that the proposed SSAD framework achieves state-of-the-art performance compared to mainstream object detection methods and SSL methods. The code is available at https://github.com/Dylonsword/SSAD
- Abstract(参考訳): パノラマX線は臨床現場で歯科疾患を診断するための簡便で効果的なツールである。
深層学習モデルは歯科医がパノラマX線を解釈するのを助けるために開発されたが、そのほとんどは、歯科医の専門知識と多くの時間的コストを必要とする注釈付きデータに悩まされている。
自己教師付き学習(SSL)はこの課題に対処するために提案されているが、事前学習と微調整の2段階のプロセスでは、さらに多くのトレーニング時間と計算資源が必要になる。
本稿では,プラグアンドプレイで任意の検出器と互換性のある自己教師付き補助検知(SSAD)フレームワークを提案する。
再建部と検出部から構成される。
両方のブランチは同時にトレーニングされ、微調整なしで同じエンコーダを共有する。
再建枝は、健康歯や疾患歯の歯質の回復を学習し、検出枝は、これらの学習特徴を診断に利用する。
微細な特徴を捕捉するエンコーダの能力を高めるため,SAMの画像エンコーダを組み込んでテクスチャ整合性(TC)損失を構築する。
3つの検出タスクによる公開DENTEXデータセットの大規模な実験により、提案したSSADフレームワークが、主流のオブジェクト検出方法やSSLメソッドと比較して最先端のパフォーマンスを達成することが示された。
コードはhttps://github.com/Dylonsword/SSADで公開されている。
関連論文リスト
- Sparse Anatomical Prompt Semi-Supervised Learning with Masked Image
Modeling for CBCT Tooth Segmentation [10.617296334463942]
Cone Beam Computed Tomography (CBCT) 歯科画像における歯の識別とセグメンテーションは, 歯科医が行う手技診断の効率と精度を著しく向上させることができる。
既存のセグメンテーション手法は主に大規模なデータボリュームトレーニングに基づいて開発され、そのアノテーションは非常に時間がかかります。
本研究では, 大量の未ラベルデータを効果的に活用し, 限られたラベル付きデータで正確な歯のセグメンテーションを実現するタスク指向Masked Auto-Encoderパラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-07T05:05:21Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
結核(TB)は世界的な健康上の脅威であり、毎年何百万人もの死者を出している。
深層学習を用いたコンピュータ支援結核診断 (CTD) は有望であるが, 限られたトレーニングデータによって進行が妨げられている。
結核X線(TBX11K)データセットは11,200個の胸部X線(CXR)画像とそれに対応するTB領域のバウンディングボックスアノテーションを含む。
このデータセットは、高品質なCTDのための洗練された検出器のトレーニングを可能にする。
論文 参考訳(メタデータ) (2023-07-06T08:27:48Z) - DIAS: A Dataset and Benchmark for Intracranial Artery Segmentation in DSA sequences [19.61593883367223]
血管形態の定量化にはDSA(Digital Subtraction Angiography)の頭蓋内動脈(IA)が重要である。
現在の研究は、主にプロプライエタリデータセットを使用した単一フレームDSAのセグメンテーションに焦点を当てている。
DSAシークエンスにおけるIAセグメンテーションのためのデータセットであるDIASを紹介する。
論文 参考訳(メタデータ) (2023-06-21T10:03:56Z) - DENTEX: An Abnormal Tooth Detection with Dental Enumeration and
Diagnosis Benchmark for Panoramic X-rays [0.3355353735901314]
パノラマX線チャレンジ(DENTEX)の歯科治療と診断は、2023年の医用画像コンピューティングとコンピュータ支援介入国際会議(MICCAI)と連携して進められている。
完全注釈付きデータに基づいて参加者アルゴリズムの評価結果を示す。
この注釈付きデータセットの提供は、この課題の結果と共に、歯科医療の分野でAIを活用したツールを作成するための基礎となるかもしれない。
論文 参考訳(メタデータ) (2023-05-30T15:15:50Z) - Unify, Align and Refine: Multi-Level Semantic Alignment for Radiology
Report Generation [48.723504098917324]
マルチレベル・クロスモーダルアライメントを学習するためのUnify, Align, then Refine (UAR)アプローチを提案する。
本稿では,Latent Space Unifier,Cross-modal Representation Aligner,Text-to-Image Refinerの3つの新しいモジュールを紹介する。
IU-XrayおよびMIMIC-CXRベンチマークデータセットの実験と解析は、UARの様々な最先端手法に対する優位性を実証している。
論文 参考訳(メタデータ) (2023-03-28T12:42:12Z) - Geometry-Aware Attenuation Field Learning for Sparse-View CBCT
Reconstruction [61.48254686722434]
Cone Beam Computed Tomography (CBCT) は歯科医療において最も広く用いられている画像診断法である。
Sparse-view CBCT 再建は放射線線量削減に重点を置いている。
本稿では,マルチビューX線プロジェクションからボリューム特徴を初めて符号化することで,新しい減衰場エンコーダデコーダフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-26T14:38:42Z) - Computer-aided Tuberculosis Diagnosis with Attribute Reasoning
Assistance [58.01014026139231]
新しい大規模結核(TB)胸部X線データセット(TBX-Att)を提案する。
属性情報を利用してTBの分類とローカライズを行うための属性支援弱教師付きフレームワークを構築した。
提案モデルはTBX-Attデータセットで評価され,今後の研究の確かなベースラインとして機能する。
論文 参考訳(メタデータ) (2022-07-01T07:50:35Z) - Breaking with Fixed Set Pathology Recognition through Report-Guided
Contrastive Training [23.506879497561712]
我々は、非構造化医療報告から直接概念を学ぶために、対照的なグローバルローカルなデュアルエンコーダアーキテクチャを採用している。
疾患分類のための大規模胸部X線データセットMIMIC-CXR,CheXpert,ChestX-Ray14について検討した。
論文 参考訳(メタデータ) (2022-05-14T21:44:05Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
本稿では, 構造的磁気共鳴画像(sMRI)に基づく自閉症スペクトラム障害の診断を, 異常検出手法を用いて提案する。
GAN(Generative Adversarial Network)は、健康な被験者のsMRIスキャンでのみ訓練される。
実験の結果、ASD検出フレームワークは最先端のトレーニングデータと互換性があり、トレーニングデータもはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-02-21T04:37:25Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
医療画像のためのエンドツーエンドのセミスーパーバイスドクロスモーダルコントラスト学習フレームワークを提案する。
まず、胸部X線を分類し、画像特徴を生成するために画像エンコーダを適用する。
放射能の特徴は別の専用エンコーダを通過し、同じ胸部x線から生成された画像の特徴の正のサンプルとして機能する。
論文 参考訳(メタデータ) (2021-04-11T09:16:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。