論文の概要: MR-BEN: A Comprehensive Meta-Reasoning Benchmark for Large Language Models
- arxiv url: http://arxiv.org/abs/2406.13975v1
- Date: Thu, 20 Jun 2024 03:50:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 17:27:03.303751
- Title: MR-BEN: A Comprehensive Meta-Reasoning Benchmark for Large Language Models
- Title(参考訳): MR-BEN:大規模言語モデルのための総合メタ推論ベンチマーク
- Authors: Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li, Pengguang Chen, Jianbo Dai, Yuxuan Yao, Rongwu Xu, Zehan Qi, Wanru Zhao, Linling Shen, Jianqiao Lu, Haochen Tan, Yukang Chen, Hao Zhang, Zhan Shi, Bailin Wang, Zhijiang Guo, Jiaya Jia,
- Abstract要約: 大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
メタ推論スキルを必要とするプロセスベースのベンチマークを提案する。
MR-BENは、人間の専門家から収集された5,975の質問からなる総合的なベンチマークである。
- 参考スコア(独自算出の注目度): 55.20845457594977
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) have shown increasing capability in problem-solving and decision-making, largely based on the step-by-step chain-of-thought reasoning processes. However, it has been increasingly challenging to evaluate the reasoning capability of LLMs. Concretely, existing outcome-based benchmarks begin to saturate and become less sufficient to monitor the progress. To this end, we present a process-based benchmark MR-BEN that demands a meta reasoning skill, where LMs are asked to locate and analyse potential errors in automatically generated reasoning steps. MR-BEN is a comprehensive benchmark comprising 5,975 questions collected from human experts, covering various subjects such as physics, chemistry, logic, coding, and more. Through our designed metrics for assessing meta-reasoning on this benchmark, we identify interesting limitations and weaknesses of current LLMs (open-source and closed-source models). For example, open-source models are seemingly comparable to GPT-4 on outcome-based benchmarks, but they lag far behind on our benchmark, revealing the underlying reasoning capability gap between them. Our dataset and codes are available on https://randolph-zeng.github.io/Mr-Ben.github.io/.
- Abstract(参考訳): 大規模言語モデル(LLM)は、主にステップバイステップの連鎖推論プロセスに基づいて、問題解決と意思決定の能力の向上を示している。
しかし、LSMの推論能力を評価することはますます困難になっている。
具体的には、既存の結果ベースのベンチマークが飽和し始め、進捗を監視するのに不十分になる。
そこで我々は,メタ推論技術を必要とするプロセスベースのベンチマーク MR-BEN を提案する。
MR-BENは、人間の専門家から5,975の質問を収集し、物理学、化学、論理学、コーディングなど様々な分野をカバーする総合的なベンチマークである。
このベンチマークでメタ推論を評価するための設計メトリクスを通じて、現在のLCM(オープンソースおよびクローズドソースモデル)の興味深い制限と弱点を特定します。
例えば、オープンソースモデルは結果ベースのベンチマークではGPT-4に匹敵するものですが、ベンチマークでははるかに遅れています。
私たちのデータセットとコードはhttps://randolph-zeng.github.io/Mr-Ben.github.io/で公開されています。
関連論文リスト
- Weak-eval-Strong: Evaluating and Eliciting Lateral Thinking of LLMs with Situation Puzzles [20.18736445118689]
SPLATは,Large Language Models (LLMs) の側方的思考を評価・引き起こすためのコンディションパズルを利用したベンチマークである。
このベンチマークは、3つの難易度で975グレードのシチュエーションパズルを含むもので、従来のモデルに基づく評価ではなく、新しいマルチターンプレーヤジャッジフレームワークを採用している。
実験により、WizardLM-2のような頑健な評価モデルが、中間質問回答と最終シナリオの精度の両方において、人間の判断と密接に一致していることが示されている。
論文 参考訳(メタデータ) (2024-10-09T10:09:11Z) - ErrorRadar: Benchmarking Complex Mathematical Reasoning of Multimodal Large Language Models Via Error Detection [60.297079601066784]
エラー検出におけるMLLMの能力を評価するために設計された最初のベンチマークであるErrorRadarを紹介する。
ErrorRadarはエラーステップ識別とエラー分類という2つのサブタスクを評価している。
2500の高品質なマルチモーダルK-12数学問題で構成され、実世界の学生相互作用から収集される。
GPT-4oの優れた性能は、まだ人間の評価に約10%遅れているため、大きな課題が残っている。
論文 参考訳(メタデータ) (2024-10-06T14:59:09Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
大規模言語モデル(LLM)は、人間の指示に基づいて様々なタスクに取り組む際に、顕著な効率性を示した。
しかし、数学や物理学の限界など、推論を必要とするタスクに苦しむことが研究によって明らかになっている。
このことは、LLMが組み込み知識を本当に理解しているか、それとも、コンテンツに対する真の理解なしにトークン分布を複製することを学ぶだけなのかという疑問を提起する。
モデルの推論能力を高めるために,新しいパラメータ効率細調整法であるDecon Causal Adaptation (DCA)を提案する。
論文 参考訳(メタデータ) (2024-09-04T13:17:09Z) - Robustness Assessment of Mathematical Reasoning in the Presence of Missing and Contradictory Conditions [48.251724997889184]
我々は、ミス・コントラクタリー条件(PMC)に関する問題というベンチマークを開発する。
本稿では,これらのシナリオにおける数ショットプロンプト手法の性能を評価するための2つの新しい指標を提案する。
SMT-LIB Prompting (SLP) と呼ばれる,SMT-LIB言語を用いて直接解決する代わりに,この問題をモデル化する手法を提案する。
論文 参考訳(メタデータ) (2024-06-07T16:24:12Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Evaluating LLMs' Mathematical and Coding Competency through Ontology-guided Interventions [47.83142414018448]
算術的推論とコード生成という,2つの一般的な推論タスクに注目します。
i) 数学やコーディング問題に対する摂動の一般的なオントロジー, (ii) 摂動を応用するための半自動手法, (iii) 2つのデータセットを紹介する。
混乱した質問に対して、すべてのモデルで大幅なパフォーマンス低下を示します。
論文 参考訳(メタデータ) (2024-01-17T18:13:07Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
MLLM(Multi-modal Large Language Models)は人工知能の分野で注目されている。
本ベンチマークは, 帰納的, 帰納的, 類推的推論の3つの主要な推論カテゴリから構成される。
我々は,この厳密に開発されたオープンエンド多段階精巧な推論ベンチマークを用いて,代表MLLMの選択を評価する。
論文 参考訳(メタデータ) (2023-11-20T07:06:31Z) - Beyond Task Performance: Evaluating and Reducing the Flaws of Large
Multimodal Models with In-Context Learning [105.77733287326308]
我々は,3Bから80Bパラメータスケールまでの最近のオープンソースLMMを,幻覚,禁忌,構成性,説明可能性,指示に従う5つの異なる軸で評価した。
トレーニングフリーなインコンテキスト学習(ICL)をソリューションとして検討し、それがこれらの制限に与える影響について検討する。
ICL研究に基づき、ICLをさらに推し進め、Multitask-ICL、Chain-of-Hindsight-ICL、Self-Correcting-ICLといった新しい多モードICL変種を提案する。
論文 参考訳(メタデータ) (2023-10-01T12:02:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。