Random pairing MLE for estimation of item parameters in Rasch model
- URL: http://arxiv.org/abs/2406.13989v1
- Date: Thu, 20 Jun 2024 04:32:34 GMT
- Title: Random pairing MLE for estimation of item parameters in Rasch model
- Authors: Yuepeng Yang, Cong Ma,
- Abstract summary: Rasch model is widely used in psychometrics to model the relationship between individuals' latent traits and their binary responses.
We introduce a new likelihood-based estimator that faithfully estimates the item parameters in the Rasch model.
We provide empirical evidence of the efficacy of the two new estimators using both simulated and real data.
- Score: 22.32547146723177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Rasch model, a classical model in the item response theory, is widely used in psychometrics to model the relationship between individuals' latent traits and their binary responses on assessments or questionnaires. In this paper, we introduce a new likelihood-based estimator -- random pairing maximum likelihood estimator ($\mathsf{RP\text{-}MLE}$) and its bootstrapped variant multiple random pairing MLE ($\mathsf{MRP\text{-}MLE}$) that faithfully estimate the item parameters in the Rasch model. The new estimators have several appealing features compared to existing ones. First, both work for sparse observations, an increasingly important scenario in the big data era. Second, both estimators are provably minimax optimal in terms of finite sample $\ell_{\infty}$ estimation error. Lastly, $\mathsf{RP\text{-}MLE}$ admits precise distributional characterization that allows uncertainty quantification on the item parameters, e.g., construction of confidence intervals of the item parameters. The main idea underlying $\mathsf{RP\text{-}MLE}$ and $\mathsf{MRP\text{-}MLE}$ is to randomly pair user-item responses to form item-item comparisons. This is carefully designed to reduce the problem size while retaining statistical independence. We also provide empirical evidence of the efficacy of the two new estimators using both simulated and real data.
Related papers
- Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - Efficient Shapley Values Estimation by Amortization for Text
Classification [66.7725354593271]
We develop an amortized model that directly predicts each input feature's Shapley Value without additional model evaluations.
Experimental results on two text classification datasets demonstrate that our amortized model estimates Shapley Values accurately with up to 60 times speedup.
arXiv Detail & Related papers (2023-05-31T16:19:13Z) - Robust Counterfactual Explanations for Neural Networks With Probabilistic Guarantees [11.841312820944774]
We propose a measure -- that we call $textitStability$ -- to quantify the robustness of counterfactuals to potential model changes for differentiable models.
Our main contribution is to show that counterfactuals with sufficiently high value of $textitStability$ will remain valid after potential model changes with high probability.
arXiv Detail & Related papers (2023-05-19T20:48:05Z) - Optimally-Weighted Estimators of the Maximum Mean Discrepancy for
Likelihood-Free Inference [12.157511906467146]
Likelihood-free inference methods typically make use of a distance between simulated and real data.
The maximum mean discrepancy (MMD) is commonly estimated at a root-$m$ rate, where $m$ is the number of simulated samples.
We propose a novel estimator for the MMD with significantly improved sample complexity.
arXiv Detail & Related papers (2023-01-27T12:13:54Z) - Uncertainty Quantification of MLE for Entity Ranking with Covariates [3.2839905453386162]
This paper concerns with statistical estimation and inference for the ranking problems based on pairwise comparisons.
We propose a novel model, Co-Assisted Ranking Estimation (CARE) model, that extends the well-known Bradley-Terry-Luce (BTL) model.
We derive the maximum likelihood estimator of $alpha_i*_i=1n$ and $beta*$ under a sparse comparison graph.
We validate our theoretical results through large-scale numerical studies and an application to the mutual fund stock holding dataset.
arXiv Detail & Related papers (2022-12-20T02:28:27Z) - Bayesian Target-Vector Optimization for Efficient Parameter
Reconstruction [0.0]
We introduce a target-vector optimization scheme that considers all $K$ contributions of the model function and that is specifically suited for parameter reconstruction problems.
It also enables to determine accurate uncertainty estimates with very few observations of the actual model function.
arXiv Detail & Related papers (2022-02-23T15:13:32Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Estimation in Tensor Ising Models [5.161531917413708]
We consider the problem of estimating the natural parameter of the $p$-tensor Ising model given a single sample from the distribution on $N$ nodes.
In particular, we show the $sqrt N$-consistency of the MPL estimate in the $p$-spin Sherrington-Kirkpatrick (SK) model.
We derive the precise fluctuations of the MPL estimate in the special case of the $p$-tensor Curie-Weiss model.
arXiv Detail & Related papers (2020-08-29T00:06:58Z) - Model-Based Multi-Agent RL in Zero-Sum Markov Games with Near-Optimal
Sample Complexity [67.02490430380415]
We show that model-based MARL achieves a sample complexity of $tilde O(|S||B|(gamma)-3epsilon-2)$ for finding the Nash equilibrium (NE) value up to some $epsilon$ error.
We also show that such a sample bound is minimax-optimal (up to logarithmic factors) if the algorithm is reward-agnostic, where the algorithm queries state transition samples without reward knowledge.
arXiv Detail & Related papers (2020-07-15T03:25:24Z) - Nonparametric Estimation of the Fisher Information and Its Applications [82.00720226775964]
This paper considers the problem of estimation of the Fisher information for location from a random sample of size $n$.
An estimator proposed by Bhattacharya is revisited and improved convergence rates are derived.
A new estimator, termed a clipped estimator, is proposed.
arXiv Detail & Related papers (2020-05-07T17:21:56Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.