論文の概要: Confidence Intervals and Simultaneous Confidence Bands Based on Deep Learning
- arxiv url: http://arxiv.org/abs/2406.14009v1
- Date: Thu, 20 Jun 2024 05:51:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 17:17:16.724487
- Title: Confidence Intervals and Simultaneous Confidence Bands Based on Deep Learning
- Title(参考訳): 深層学習に基づく信頼区間と同時信頼帯域
- Authors: Asaf Ben Arie, Malka Gorfine,
- Abstract要約: 本手法は, 適用された最適化アルゴリズムに固有の雑音からデータの不確実性を正しく解き放つことのできる, 有効な非パラメトリックブートストラップ法である。
提案したアドホック法は、トレーニングプロセスに干渉することなく、ディープニューラルネットワークに容易に統合できる。
- 参考スコア(独自算出の注目度): 0.36832029288386137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have significantly improved prediction accuracy in various fields, gaining recognition across numerous disciplines. Yet, an aspect of deep learning that remains insufficiently addressed is the assessment of prediction uncertainty. Producing reliable uncertainty estimators could be crucial in practical terms. For instance, predictions associated with a high degree of uncertainty could be sent for further evaluation. Recent works in uncertainty quantification of deep learning predictions, including Bayesian posterior credible intervals and a frequentist confidence-interval estimation, have proven to yield either invalid or overly conservative intervals. Furthermore, there is currently no method for quantifying uncertainty that can accommodate deep neural networks for survival (time-to-event) data that involves right-censored outcomes. In this work, we provide a valid non-parametric bootstrap method that correctly disentangles data uncertainty from the noise inherent in the adopted optimization algorithm, ensuring that the resulting point-wise confidence intervals or the simultaneous confidence bands are accurate (i.e., valid and not overly conservative). The proposed ad-hoc method can be easily integrated into any deep neural network without interfering with the training process. The utility of the proposed approach is illustrated by constructing simultaneous confidence bands for survival curves derived from deep neural networks for survival data with right censoring.
- Abstract(参考訳): 深層学習モデルは様々な分野における予測精度を大幅に向上させ、多くの分野において認識されている。
しかし、未解決の深層学習の側面は、予測の不確実性の評価である。
信頼性のある不確実性推定器の製作は、実際的に重要な意味を持つ。
例えば、高い不確実性に関連する予測を、さらなる評価のために送信することができる。
近年の深層学習予測の不確かさの定量化研究は、ベイジアン後続の信頼区間や、頻繁な信頼区間の推定などによって、無効あるいは過度に保守的な区間が得られることが証明されている。
さらに、現在、右チャージされた結果を含む生存(時間からイベント)データにディープニューラルネットワークを適応できる不確実性を定量化する方法はない。
本研究は, 適応最適化アルゴリズムに固有の雑音からデータの不確実性を正しく解き、結果のポイントワイド信頼区間や同時信頼帯域が正確であることを保証する有効な非パラメトリックブートストラップ法を提供する(すなわち, 過度に保守的でない)。
提案したアドホック法は、トレーニングプロセスに干渉することなく、ディープニューラルネットワークに容易に統合できる。
提案手法の有効性は、深層ニューラルネットワークから得られた生存曲線と、正しい検閲を伴う生存データとの同時信頼バンドを構築することによって説明される。
関連論文リスト
- Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Integrating Uncertainty into Neural Network-based Speech Enhancement [27.868722093985006]
時間周波数領域における監視されたマスキングアプローチは、ディープニューラルネットワークを使用して乗法マスクを推定し、クリーンな音声を抽出することを目的としている。
これにより、信頼性の保証や尺度を使わずに、各入力に対する単一の見積もりが導かれる。
クリーン音声推定における不確実性モデリングの利点について検討する。
論文 参考訳(メタデータ) (2023-05-15T15:55:12Z) - Fast Uncertainty Estimates in Deep Learning Interatomic Potentials [0.0]
本研究では,単一ニューラルネットワークを用いて,アンサンブルを必要とせずに予測不確実性を推定する手法を提案する。
本研究では,不確実性の推定値の品質が深層アンサンブルから得られた値と一致することを示す。
論文 参考訳(メタデータ) (2022-11-17T20:13:39Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
ディープニューラルネットワークは、データ内の隠れパターンを検出し、それらを活用して予測する強力なツールであるが、不確実性を理解するように設計されていない。
我々は予測力を犠牲にすることなく、より信頼性の高い不確実性推定を導出できる新しいトレーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-05-12T05:08:10Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
エンドツーエンド自動音声認識(ASR)における信頼度推定の検討
4つのよく知られた音声データセットにおける信頼度手法の広範なベンチマークを提供する。
以上の結果から,ロジットを学習温度でスケーリングすることで,強いベースラインが得られることが示唆された。
論文 参考訳(メタデータ) (2021-01-14T09:51:59Z) - Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via
Higher-Order Influence Functions [121.10450359856242]
我々は、モデル損失関数の影響関数を利用して、予測信頼区間のジャックニフェ(または、アウト・ワン・アウト)推定器を構築する頻繁な手順を開発する。
1)および(2)を満たすDJは、幅広いディープラーニングモデルに適用可能であり、実装が容易であり、モデルトレーニングに干渉したり、精度を妥協したりすることなく、ポストホックな方法で適用することができる。
論文 参考訳(メタデータ) (2020-06-29T13:36:52Z) - Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning
to End [18.49954482336334]
本稿では, 疎雑音入力から最終予測まで, 深度データの不確かさのモデル化に着目する。
正規化畳み込みニューラルネットワーク(NCNN)に基づく自己教師型入力信頼度推定器を学習し,入力中の乱れの測定値を特定する手法を提案する。
深度推定のためのKITTIデータセットに対するアプローチを評価すると、予測精度、不確実性尺度の品質、計算効率の点で既存のベイズディープラーニングアプローチよりも優れています。
論文 参考訳(メタデータ) (2020-06-05T10:18:35Z) - Deep Bayesian Gaussian Processes for Uncertainty Estimation in
Electronic Health Records [30.65770563934045]
我々はディープ・ベイズ学習フレームワークの特徴とディープ・カーネル・ラーニングを融合させ、より包括的な不確実性推定に両手法の強みを活用する。
我々は,不均衡なデータセットにおけるマイノリティクラスにおいて,過度に信頼された予測を行うことに対して,我々の手法はより感受性が低いことを示す。
論文 参考訳(メタデータ) (2020-03-23T10:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。