論文の概要: Boosting Hyperspectral Image Classification with Gate-Shift-Fuse Mechanisms in a Novel CNN-Transformer Approach
- arxiv url: http://arxiv.org/abs/2406.14120v3
- Date: Wed, 02 Oct 2024 19:00:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-04 23:29:34.345995
- Title: Boosting Hyperspectral Image Classification with Gate-Shift-Fuse Mechanisms in a Novel CNN-Transformer Approach
- Title(参考訳): ゲートシフト拡散機構を用いた新しいCNN変換器を用いた高スペクトル画像分類
- Authors: Mohamed Fadhlallah Guerri, Cosimo Distante, Paolo Spagnolo, Fares Bougourzi, Abdelmalik Taleb-Ahmed,
- Abstract要約: 本稿では,GSFブロックと変圧器ブロックの2つの畳み込みブロックを含むHSI分類モデルを提案する。
GSFブロックは局所的および大域的空間スペクトルの特徴の抽出を強化するように設計されている。
HSI立方体からの情報の抽出を促進するために,効果的な注意機構モジュールも提案されている。
- 参考スコア(独自算出の注目度): 8.982950112225264
- License:
- Abstract: During the process of classifying Hyperspectral Image (HSI), every pixel sample is categorized under a land-cover type. CNN-based techniques for HSI classification have notably advanced the field by their adept feature representation capabilities. However, acquiring deep features remains a challenge for these CNN-based methods. In contrast, transformer models are adept at extracting high-level semantic features, offering a complementary strength. This paper's main contribution is the introduction of an HSI classification model that includes two convolutional blocks, a Gate-Shift-Fuse (GSF) block and a transformer block. This model leverages the strengths of CNNs in local feature extraction and transformers in long-range context modelling. The GSF block is designed to strengthen the extraction of local and global spatial-spectral features. An effective attention mechanism module is also proposed to enhance the extraction of information from HSI cubes. The proposed method is evaluated on four well-known datasets (the Indian Pines, Pavia University, WHU-WHU-Hi-LongKou and WHU-Hi-HanChuan), demonstrating that the proposed framework achieves superior results compared to other models.
- Abstract(参考訳): ハイパースペクトル画像(HSI)を分類する過程で、各画素はランドカバー型に分類される。
HSI分類のためのCNNベースの技術は、その適応的特徴表現能力によって、明らかに分野を進歩させてきた。
しかし、これらのCNNベースの手法では、深い機能の獲得は依然として困難である。
対照的に、トランスモデルは高いレベルのセマンティックな特徴を抽出し、補完的な強度を提供する。
本論文の主な貢献は、2つの畳み込みブロック(GSF)ブロックとトランスフォーマーブロックを含むHSI分類モデルの導入である。
このモデルは、局所特徴抽出と長距離コンテキストモデリングにおける変換器におけるCNNの強みを利用する。
GSFブロックは、局所的および大域的空間スペクトルの特徴の抽出を強化するように設計されている。
HSI立方体からの情報の抽出を促進するために,効果的な注意機構モジュールも提案されている。
提案手法は,4つの有名なデータセット(インドパインズ,パヴィア大学,WHU-WHU-Hi-LongKou,WHU-Hi-HanChuan)を用いて評価し,提案手法が他のモデルと比較して優れた結果が得られることを示した。
関連論文リスト
- FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
CNNのコントラスト感度関数を実験的に定量化し,人間の視覚システムと比較した。
本稿ではウェーブレット誘導分光ポーリングモジュール(WSPM)を提案する。
人間の視覚系をさらにエミュレートするために、周波数領域拡張受容野ブロック(FE-RFB)を導入する。
本研究では,SAM2 をバックボーンとし,Hiera-Large を事前学習ブロックとして組み込んだ FE-UNet を開発した。
論文 参考訳(メタデータ) (2025-02-06T07:24:34Z) - Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
本稿では,分類精度を高めつつ,データ量を大幅に削減する新しいフレームワークを提案する。
本モデルでは,空間特徴解析のための特殊ブロックによって補完されるスペクトル特徴を効率よく抽出するために,双方向逆畳み込みニューラルネットワーク(CNN)を用いる。
論文 参考訳(メタデータ) (2024-11-29T23:32:26Z) - Spatial and Spatial-Spectral Morphological Mamba for Hyperspectral Image Classification [27.943537708598306]
形態空間マンバ(SMM)モデルと形態空間スペクトルマンバ(SSMM)モデル(MorpMamba)を提案する。
MorpMambaは、形態的操作の強みと状態空間モデルフレームワークを組み合わせることで、トランスフォーマーのより効率的な代替手段を提供する。
広く使われているHSIデータセットの実験結果から、MorpMambaは従来のCNNやトランスフォーマーモデルよりも優れたパラメトリック効率を実現することが示された。
論文 参考訳(メタデータ) (2024-08-02T16:28:51Z) - CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification [3.821081081400729]
現在の畳み込みニューラルネットワーク(CNN)は、ハイパースペクトルデータの局所的な特徴に焦点を当てている。
Transformerフレームワークは、ハイパースペクトル画像からグローバルな特徴を抽出する。
本研究は、CMTNet(Convolutional Meet Transformer Network)を紹介する。
論文 参考訳(メタデータ) (2024-06-20T07:56:51Z) - HSIMamba: Hyperpsectral Imaging Efficient Feature Learning with Bidirectional State Space for Classification [16.742768644585684]
HSIMambaは、双方向の逆畳み込みニューラルネットワークパスを使用して、スペクトル特徴をより効率的に抽出する新しいフレームワークである。
提案手法は,CNNの動作効率と,トランスフォーマに見られる注意機構の動的特徴抽出機能を組み合わせたものである。
このアプローチは、現在のベンチマークを超えて分類精度を改善し、トランスフォーマーのような高度なモデルで遭遇する計算の非効率性に対処する。
論文 参考訳(メタデータ) (2024-03-30T07:27:36Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
ハイパースペクトル画像(HSI)クラスタリングは重要な課題だが難しい課題である。
まず3次元と2次元のハイブリッド畳み込みニューラルネットワークを用いてHSIの高次空間およびスペクトルの特徴を抽出する。
次に,超画素グラフの対比クラスタリングモデルを設計し,識別的超画素表現を学習する。
論文 参考訳(メタデータ) (2024-03-04T07:40:55Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
我々は拡散と変圧器技術を組み合わせたDiffSpectralNetと呼ばれる新しいネットワークを提案する。
まず,拡散モデルに基づく教師なし学習フレームワークを用いて,高レベル・低レベルのスペクトル空間的特徴を抽出する。
この拡散法はスペクトル空間の特徴を多様かつ有意義に抽出し,HSI分類の改善につながる。
論文 参考訳(メタデータ) (2023-10-29T15:26:37Z) - A heterogeneous group CNN for image super-resolution [127.2132400582117]
畳み込みニューラルネットワーク(CNN)は、深いアーキテクチャを通して顕著な性能を得た。
異種グループSR CNN(HGSRCNN)を,異なるタイプの構造情報を利用して高品質な画像を得る。
論文 参考訳(メタデータ) (2022-09-26T04:14:59Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
本稿では, サース・トゥ・ファインス・スパース・トランス (CST) を用いた新しいトランス方式を提案する。
HSI再構成のための深層学習にHSI空間を埋め込んだCST
特に,CSTは,提案したスペクトル認識スクリーニング機構(SASM)を粗いパッチ選択に使用し,選択したパッチを,細かなピクセルクラスタリングと自己相似性キャプチャのために,カスタマイズしたスペクトル集約ハッシュ型マルチヘッド自己アテンション(SAH-MSA)に入力する。
論文 参考訳(メタデータ) (2022-03-09T16:17:47Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。