MEAT: Median-Ensemble Adversarial Training for Improving Robustness and Generalization
- URL: http://arxiv.org/abs/2406.14259v1
- Date: Thu, 20 Jun 2024 12:28:47 GMT
- Title: MEAT: Median-Ensemble Adversarial Training for Improving Robustness and Generalization
- Authors: Zhaozhe Hu, Jia-Li Yin, Bin Chen, Luojun Lin, Bo-Hao Chen, Ximeng Liu,
- Abstract summary: Self-ensemble adversarial training methods improve model robustness by ensembling models at different training epochs.
Previous research has shown that self-ensemble defense methods in adversarial training (AT) still suffer from robust overfitting.
We propose an easy-to-operate and effective Median-Ensemble Adversarial Training (MEAT) method to solve this problem.
- Score: 38.445787290101826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-ensemble adversarial training methods improve model robustness by ensembling models at different training epochs, such as model weight averaging (WA). However, previous research has shown that self-ensemble defense methods in adversarial training (AT) still suffer from robust overfitting, which severely affects the generalization performance. Empirically, in the late phases of training, the AT becomes more overfitting to the extent that the individuals for weight averaging also suffer from overfitting and produce anomalous weight values, which causes the self-ensemble model to continue to undergo robust overfitting due to the failure in removing the weight anomalies. To solve this problem, we aim to tackle the influence of outliers in the weight space in this work and propose an easy-to-operate and effective Median-Ensemble Adversarial Training (MEAT) method to solve the robust overfitting phenomenon existing in self-ensemble defense from the source by searching for the median of the historical model weights. Experimental results show that MEAT achieves the best robustness against the powerful AutoAttack and can effectively allievate the robust overfitting. We further demonstrate that most defense methods can improve robust generalization and robustness by combining with MEAT.
Related papers
- Module-wise Adaptive Adversarial Training for End-to-end Autonomous Driving [33.90341803416033]
We present Module-wise Adaptive Adrial Training (MA2T) for end-to-end autonomous driving models.
We introduce Module-wise Noise Injection, which injects noise before the input of different modules, targeting training models with the guidance of overall objectives.
We also introduce Dynamic Weight Accumulation Adaptation, which incorporates accumulated weight changes to adaptively learn and adjust the loss weights of each module.
arXiv Detail & Related papers (2024-09-11T15:00:18Z) - The Effectiveness of Random Forgetting for Robust Generalization [21.163070161951868]
We introduce a novel learning paradigm called "Forget to Mitigate Overfitting" (FOMO)
FOMO alternates between the forgetting phase, which randomly forgets a subset of weights, and the relearning phase, which emphasizes learning generalizable features.
Our experiments show that FOMO alleviates robust overfitting by significantly reducing the gap between the best and last robust test accuracy.
arXiv Detail & Related papers (2024-02-18T23:14:40Z) - Pre-trained Model Guided Fine-Tuning for Zero-Shot Adversarial Robustness [52.9493817508055]
We propose Pre-trained Model Guided Adversarial Fine-Tuning (PMG-AFT) to enhance the model's zero-shot adversarial robustness.
Our approach consistently improves clean accuracy by an average of 8.72%.
arXiv Detail & Related papers (2024-01-09T04:33:03Z) - PIAT: Parameter Interpolation based Adversarial Training for Image
Classification [19.276850361815953]
We propose a novel framework, termed Interpolation based Adversarial Training (PIAT), that makes full use of the historical information during training.
Our framework is general and could further boost the robust accuracy when combined with other adversarial training methods.
arXiv Detail & Related papers (2023-03-24T12:22:34Z) - Alleviating Robust Overfitting of Adversarial Training With Consistency
Regularization [9.686724616328874]
Adversarial training (AT) has proven to be one of the most effective ways to defend Deep Neural Networks (DNNs) against adversarial attacks.
robustness will drop sharply at a certain stage, always exists during AT.
consistency regularization, a popular technique in semi-supervised learning, has a similar goal as AT and can be used to alleviate robust overfitting.
arXiv Detail & Related papers (2022-05-24T03:18:43Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
Adversarial training is the strongest strategy against various adversarial attacks among all sorts of defense methods.
Recent works mainly focus on developing new loss functions or regularizers, attempting to find the unique optimal point in the weight space.
We devise a simple but powerful emphSelf-Ensemble Adversarial Training (SEAT) method for yielding a robust classifier by averaging weights of history models.
arXiv Detail & Related papers (2022-03-18T01:12:18Z) - Analysis and Applications of Class-wise Robustness in Adversarial
Training [92.08430396614273]
Adversarial training is one of the most effective approaches to improve model robustness against adversarial examples.
Previous works mainly focus on the overall robustness of the model, and the in-depth analysis on the role of each class involved in adversarial training is still missing.
We provide a detailed diagnosis of adversarial training on six benchmark datasets, i.e., MNIST, CIFAR-10, CIFAR-100, SVHN, STL-10 and ImageNet.
We observe that the stronger attack methods in adversarial learning achieve performance improvement mainly from a more successful attack on the vulnerable classes.
arXiv Detail & Related papers (2021-05-29T07:28:35Z) - Voting based ensemble improves robustness of defensive models [82.70303474487105]
We study whether it is possible to create an ensemble to further improve robustness.
By ensembling several state-of-the-art pre-trained defense models, our method can achieve a 59.8% robust accuracy.
arXiv Detail & Related papers (2020-11-28T00:08:45Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
Recent work has shown that, when integrated with adversarial training, self-supervised pre-training can lead to state-of-the-art robustness.
We improve robustness-aware self-supervised pre-training by learning representations consistent under both data augmentations and adversarial perturbations.
arXiv Detail & Related papers (2020-10-26T04:44:43Z) - Boosting Adversarial Training with Hypersphere Embedding [53.75693100495097]
Adversarial training is one of the most effective defenses against adversarial attacks for deep learning models.
In this work, we advocate incorporating the hypersphere embedding mechanism into the AT procedure.
We validate our methods under a wide range of adversarial attacks on the CIFAR-10 and ImageNet datasets.
arXiv Detail & Related papers (2020-02-20T08:42:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.