Proximal Interacting Particle Langevin Algorithms
- URL: http://arxiv.org/abs/2406.14292v2
- Date: Thu, 17 Oct 2024 20:25:53 GMT
- Title: Proximal Interacting Particle Langevin Algorithms
- Authors: Paula Cordero Encinar, Francesca R. Crucinio, O. Deniz Akyildiz,
- Abstract summary: We introduce Proximal Interacting Particle Langevin Algorithms (PIPLA) for inference and learning in latent variable models.
We propose several variants within the novel proximal IPLA family, tailored to the problem of estimating parameters in a non-differentiable statistical model.
Our theory and experiments together show that PIPLA family can be the de facto choice for parameter estimation problems in latent variable models for non-differentiable models.
- Score: 0.0
- License:
- Abstract: We introduce a class of algorithms, termed Proximal Interacting Particle Langevin Algorithms (PIPLA), for inference and learning in latent variable models whose joint probability density is non-differentiable. Leveraging proximal Markov chain Monte Carlo (MCMC) techniques and the recently introduced interacting particle Langevin algorithm (IPLA), we propose several variants within the novel proximal IPLA family, tailored to the problem of estimating parameters in a non-differentiable statistical model. We prove nonasymptotic bounds for the parameter estimates produced by multiple algorithms in the strongly log-concave setting and provide comprehensive numerical experiments on various models to demonstrate the effectiveness of the proposed methods. In particular, we demonstrate the utility of the proposed family of algorithms on a toy hierarchical example where our assumptions can be checked, as well as on the problems of sparse Bayesian logistic regression, sparse Bayesian neural network, and sparse matrix completion. Our theory and experiments together show that PIPLA family can be the de facto choice for parameter estimation problems in latent variable models for non-differentiable models.
Related papers
- Interacting Particle Langevin Algorithm for Maximum Marginal Likelihood
Estimation [2.53740603524637]
We develop a class of interacting particle systems for implementing a maximum marginal likelihood estimation procedure.
In particular, we prove that the parameter marginal of the stationary measure of this diffusion has the form of a Gibbs measure.
Using a particular rescaling, we then prove geometric ergodicity of this system and bound the discretisation error.
in a manner that is uniform in time and does not increase with the number of particles.
arXiv Detail & Related papers (2023-03-23T16:50:08Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Deep Learning Aided Laplace Based Bayesian Inference for Epidemiological
Systems [2.596903831934905]
We propose a hybrid approach where Laplace-based Bayesian inference is combined with an ANN architecture for obtaining approximations to the ODE trajectories.
The effectiveness of our proposed methods is demonstrated using an epidemiological system with non-analytical solutions, the Susceptible-Infectious-Removed (SIR) model for infectious diseases.
arXiv Detail & Related papers (2022-10-17T09:02:41Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Gaussian Process Latent Class Choice Models [7.992550355579791]
We present a non-parametric class of probabilistic machine learning within discrete choice models (DCMs)
The proposed model would assign individuals probabilistically to behaviorally homogeneous clusters (latent classes) using GPs.
The model is tested on two different mode choice applications and compared against different LCCM benchmarks.
arXiv Detail & Related papers (2021-01-28T19:56:42Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Uncertainty Modelling in Risk-averse Supply Chain Systems Using
Multi-objective Pareto Optimization [0.0]
One of the arduous tasks in supply chain modelling is to build robust models against irregular variations.
We have introduced a novel methodology namely, Pareto Optimization to handle uncertainties and bound the entropy of such uncertainties by explicitly modelling them under some apriori assumptions.
arXiv Detail & Related papers (2020-04-24T21:04:25Z) - Bayesian System ID: Optimal management of parameter, model, and
measurement uncertainty [0.0]
We evaluate the robustness of a probabilistic formulation of system identification (ID) to sparse, noisy, and indirect data.
We show that the log posterior has improved geometric properties compared with the objective function surfaces of traditional methods.
arXiv Detail & Related papers (2020-03-04T22:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.