Identifiable Multi-View Causal Discovery Without Non-Gaussianity
- URL: http://arxiv.org/abs/2502.20115v2
- Date: Fri, 28 Feb 2025 17:33:29 GMT
- Title: Identifiable Multi-View Causal Discovery Without Non-Gaussianity
- Authors: Ambroise Heurtebise, Omar Chehab, Pierre Ablin, Alexandre Gramfort, Aapo Hyvärinen,
- Abstract summary: We propose a novel approach to linear causal discovery in the framework of multi-view Structural Equation Models (SEM)<n>We prove the identifiability of all the parameters of the model without any further assumptions on the structure of the SEM other than it being acyclic.<n>The proposed methodology is validated through simulations and application on real data, where it enables the estimation of causal graphs between brain regions.
- Score: 63.217175519436125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel approach to linear causal discovery in the framework of multi-view Structural Equation Models (SEM). Our proposed model relaxes the well-known assumption of non-Gaussian disturbances by alternatively assuming diversity of variances over views, making it more broadly applicable. We prove the identifiability of all the parameters of the model without any further assumptions on the structure of the SEM other than it being acyclic. We further propose an estimation algorithm based on recent advances in multi-view Independent Component Analysis (ICA). The proposed methodology is validated through simulations and application on real neuroimaging data, where it enables the estimation of causal graphs between brain regions.
Related papers
- Covariate-dependent Graphical Model Estimation via Neural Networks with Statistical Guarantees [18.106204331704156]
We consider settings where the graph structure is co-dependent, and investigate a deep neural network-based approach to estimate it.
Theoretical results with PAC guarantees are established for the method, under assumptions commonly used in an Empirical Risk Minimization framework.
The performance of the proposed method is evaluated on several synthetic data settings and benchmarked against existing approaches.
arXiv Detail & Related papers (2025-04-23T02:13:36Z) - Proximal Interacting Particle Langevin Algorithms [0.0]
We introduce Proximal Interacting Particle Langevin Algorithms (PIPLA) for inference and learning in latent variable models.
We propose several variants within the novel proximal IPLA family, tailored to the problem of estimating parameters in a non-differentiable statistical model.
Our theory and experiments together show that PIPLA family can be the de facto choice for parameter estimation problems in latent variable models for non-differentiable models.
arXiv Detail & Related papers (2024-06-20T13:16:41Z) - Directed Cyclic Graph for Causal Discovery from Multivariate Functional
Data [15.26007975367927]
We introduce a functional linear structural equation model for causal structure learning.
To enhance interpretability, our model involves a low-dimensional causal embedded space.
We prove that the proposed model is causally identifiable under standard assumptions.
arXiv Detail & Related papers (2023-10-31T15:19:24Z) - Investigating the Impact of Model Misspecification in Neural
Simulation-based Inference [1.933681537640272]
We study the behaviour of neural SBI algorithms in the presence of various forms of model misspecification.
We find that misspecification can have a profoundly deleterious effect on performance.
We conclude that new approaches are required to address model misspecification if neural SBI algorithms are to be relied upon to derive accurate conclusions.
arXiv Detail & Related papers (2022-09-05T09:08:16Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.