論文の概要: Identifiable Exchangeable Mechanisms for Causal Structure and Representation Learning
- arxiv url: http://arxiv.org/abs/2406.14302v2
- Date: Mon, 9 Sep 2024 20:43:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 22:52:03.549691
- Title: Identifiable Exchangeable Mechanisms for Causal Structure and Representation Learning
- Title(参考訳): 因果構造と表現学習のための識別可能な交換可能なメカニズム
- Authors: Patrik Reizinger, Siyuan Guo, Ferenc Huszár, Bernhard Schölkopf, Wieland Brendel,
- Abstract要約: IEM(Identible Exchangeable Mechanisms)と呼ばれる,表現と構造学習のための統合フレームワークを提供する。
IEMは、交換可能な非i.d.データにおける因果構造同定に必要な条件を緩和する新しい洞察を提供する。
また、認識可能な表現学習における双対性条件の存在を実証し、新たな識別可能性結果をもたらす。
- 参考スコア(独自算出の注目度): 54.69189620971405
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying latent representations or causal structures is important for good generalization and downstream task performance. However, both fields have been developed rather independently. We observe that several methods in both representation and causal structure learning rely on the same data-generating process (DGP), namely, exchangeable but not i.i.d. (independent and identically distributed) data. We provide a unified framework, termed Identifiable Exchangeable Mechanisms (IEM), for representation and structure learning under the lens of exchangeability. IEM provides new insights that let us relax the necessary conditions for causal structure identification in exchangeable non--i.i.d. data. We also demonstrate the existence of a duality condition in identifiable representation learning, leading to new identifiability results. We hope this work will pave the way for further research in causal representation learning.
- Abstract(参考訳): 潜在表現や因果構造を同定することは、優れた一般化と下流タスク性能にとって重要である。
しかし、どちらの分野も比較的独立に開発されている。
我々は、表現と因果構造学習の双方において、同じデータ生成プロセス(DGP)、すなわち交換可能であるが、非独立かつ同一に分散している)データに依存しているいくつかの手法を観察する。
IEM(Identible Exchangeable Mechanisms)と呼ばれる,交換可能性のレンズ下での表現と構造学習のための統合フレームワークを提供する。
IEMは、交換可能な非I.d.データにおける因果構造同定に必要な条件を緩和する新しい洞察を提供する。
また、認識可能な表現学習における双対性条件の存在を実証し、新たな識別可能性結果をもたらす。
この研究が、因果表現学習のさらなる研究の道を開くことを願っている。
関連論文リスト
- Identifiable Causal Representation Learning: Unsupervised, Multi-View, and Multi-Environment [10.814585613336778]
因果表現学習は、機械学習のコアとなる強みと因果性を組み合わせることを目的としている。
この論文は、CRLが直接の監督なしに何が可能であるかを調査し、理論的基礎に寄与する。
論文 参考訳(メタデータ) (2024-06-19T09:14:40Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Flow Factorized Representation Learning [109.51947536586677]
本稿では、異なる入力変換を定義する潜在確率パスの別個のセットを規定する生成モデルを提案する。
本モデルは,ほぼ同変モデルに近づきながら,標準表現学習ベンチマークにおいて高い確率を達成することを示す。
論文 参考訳(メタデータ) (2023-09-22T20:15:37Z) - Objectives Matter: Understanding the Impact of Self-Supervised
Objectives on Vision Transformer Representations [13.437097059358067]
本研究では,再建型学習機能と共同埋め込み型学習機能との相違について述べる。
結合埋め込み特性は,異なる目的が異なる情報分布を駆動するため,分類のための線形プローブ転送の精度が向上することがわかった。
論文 参考訳(メタデータ) (2023-04-25T18:48:23Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
本稿では,オブジェクト構造情報を変換器に組み込んだSIM-Trans(Structure Information Modeling Transformer)を提案する。
提案した2つのモジュールは軽量化されており、任意のトランスフォーマーネットワークにプラグインでき、エンドツーエンドで容易に訓練できる。
実験と解析により,提案したSIM-Transが細粒度視覚分類ベンチマークの最先端性能を達成することを示した。
論文 参考訳(メタデータ) (2022-08-31T03:00:07Z) - Properties from Mechanisms: An Equivariance Perspective on Identifiable
Representation Learning [79.4957965474334]
教師なし表現学習の主な目標は、データ生成プロセスが潜在プロパティを回復するために「反転」することである。
この論文は「進化を支配するメカニズムの知識を活用して潜伏特性を識別するのか?」と問う。
我々は、可能なメカニズムの集合に関する知識が異なるため、不特定性の原因の完全な特徴づけを提供する。
論文 参考訳(メタデータ) (2021-10-29T14:04:08Z) - Learning Domain Invariant Representations for Generalizable Person
Re-Identification [71.35292121563491]
ReID(Generalizable person Re-Identification)は、最近のコンピュータビジョンコミュニティで注目を集めている。
DIR-ReID(Domain Invariant Representations for Generalizable Person Re-Identification)という新しい一般化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-29T18:59:48Z) - ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on
Nonlinear ICA [11.919315372249802]
確率モデルの同定可能性理論を考察する。
我々は,独立に修飾されたコンポーネント分析の枠組みにおけるコンポーネントの推定に,我々のモデルを利用できることを示す。
論文 参考訳(メタデータ) (2020-02-26T14:43:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。