論文の概要: Robust Few-shot Transfer Learning for Knowledge Base Question Answering with Unanswerable Questions
- arxiv url: http://arxiv.org/abs/2406.14313v1
- Date: Thu, 20 Jun 2024 13:43:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:32:31.213068
- Title: Robust Few-shot Transfer Learning for Knowledge Base Question Answering with Unanswerable Questions
- Title(参考訳): 難解な質問に対する知識ベース質問に対するロバスト・ファウショット・トランスファー学習
- Authors: Riya Sawhney, Indrajit Bhattacharya, Mausam,
- Abstract要約: FUn-FuSICは、解答不能なKBQAに対して、最先端(SoTA)の少ショット転送モデルを拡張して、解答不能な処理を行う。
新たに構築されたデータセットに対する実験により、FUn-FuSIC は KBQA に対する SoTA モデルの適合性に優れることがわかった。
- 参考スコア(独自算出の注目度): 22.411601767105807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Real-world KBQA applications require models that are (1) robust -- e.g., can differentiate between answerable and unanswerable questions, and (2) low-resource -- do not require large training data. Towards this goal, we propose the novel task of few-shot transfer for KBQA with unanswerable questions. We present FUn-FuSIC that extends the state-of-the-art (SoTA) few-shot transfer model for answerable-only KBQA to handle unanswerability. It iteratively prompts an LLM to generate logical forms for the question by providing feedback using a diverse suite of syntactic, semantic and execution guided checks, and adapts self-consistency to assess confidence of the LLM to decide answerability. Experiments over newly constructed datasets show that FUn-FuSIC outperforms suitable adaptations of the SoTA model for KBQA with unanswerability, and the SoTA model for answerable-only few-shot-transfer KBQA.
- Abstract(参考訳): 実世界のKBQAアプリケーションは、(1)頑健な -- 例えば、回答不可能な質問と未解決な質問を区別できるモデルが必要であり、(2)低リソースなアプリケーションは、大規模なトレーニングデータを必要としない。
そこで本稿では,KBQA に対して疑問を呈する新規な課題を提案する。
FUn-FuSICは、解答不能なKBQAに対して、最先端(SoTA)の少ショット転送モデルを拡張して、解答不能な処理を行う。
多様な構文、意味、実行ガイド付きチェックを用いてフィードバックを提供することで、LLMに質問に対する論理形式を生成することを反復的に促し、LLMの信頼性を評価するために自己整合性を適用して回答可能性を決定する。
新たに構築されたデータセットに対する実験により、FUn-FuSICはKBQAに対するSoTAモデルの適度な適応と、回答可能のみの少ショット転送KBQAに対するSoTAモデルより優れていることが示された。
関連論文リスト
- Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - RetinaQA: A Robust Knowledge Base Question Answering Model for both Answerable and Unanswerable Questions [23.73807255464977]
State-of-the-the-art Knowledge Base Question Answering (KBQA)モデルはすべての質問に答えられると仮定する。
単一KBQAアーキテクチャにおいて2つの重要なアイデアを統一する新しいモデルであるRetinaQAを提案する。
RetinaQAは、解答可能な問題と解答不能な問題の両方を扱う上で、最先端KBQAモデルの適応性を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-03-16T08:08:20Z) - Chain-of-Discussion: A Multi-Model Framework for Complex Evidence-Based Question Answering [55.295699268654545]
本稿では,オープンソースのLarge Language Model間の相乗効果を利用する新しいChain-of-Discussionフレームワークを提案する。
実験の結果,複数のLSM間の議論は回答の質を高める上で重要な役割を担っていることがわかった。
論文 参考訳(メタデータ) (2024-02-26T05:31:34Z) - Few-shot Transfer Learning for Knowledge Base Question Answering: Fusing Supervised Models with In-Context Learning [20.80841972133938]
既存の知識ベース質問回答(KBQA)アーキテクチャは、注釈付きデータに飢えている。
KBQAでは,対象ドメインがラベル付きサンプルを少数提供している。
本稿では,複数のソース学習型検索器を用いてKB検索を行う新しいKBQAアーキテクチャFuSIC-KBQAを提案する。
論文 参考訳(メタデータ) (2023-11-15T11:56:56Z) - ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models [19.85526116658481]
本稿では,新規かつ簡易な生成検索KBQAフレームワークであるChatKBQAを紹介する。
実験の結果,ChatKBQAは標準KBQAデータセット上で新たな最先端性能を実現することがわかった。
この研究は、LLMと知識グラフを組み合わせるための新しいパラダイムとして、解釈可能および知識要求型質問応答のパラダイムと見なすこともできる。
論文 参考訳(メタデータ) (2023-10-13T09:45:14Z) - Open-Set Knowledge-Based Visual Question Answering with Inference Paths [79.55742631375063]
知識に基づく視覚的質問回答(KB-VQA)の目的は、外部知識ベースの助けを借りて質問に対する正しい回答を提供することである。
KB-VQA, Graph pATH ranker (GATHER for brevity) の新しいレトリバーランカパラダイムを提案する。
具体的には、グラフの構築、プルーニング、パスレベルのランク付けが含まれており、正確な回答を検索するだけでなく、推論パスを提供して推論プロセスを説明する。
論文 参考訳(メタデータ) (2023-10-12T09:12:50Z) - FlexKBQA: A Flexible LLM-Powered Framework for Few-Shot Knowledge Base
Question Answering [16.88132219032486]
手動のアノテーションに関連する負担を軽減するためにFlexKBQAを導入します。
我々はLarge Language Models (LLM) を,KBQAタスクに固有の課題に対処するためのプログラムトランスレータとして活用する。
具体的には、FlexKBQAは自動化アルゴリズムを利用して、知識ベースからSPARQLクエリなどの多様なプログラムをサンプリングする。
より難易度の高いゼロショットシナリオでさえも、FlexKBQAは、いくつかのアノテーションで印象的な結果を得ることができます。
論文 参考訳(メタデータ) (2023-08-23T11:00:36Z) - Momentum Contrastive Pre-training for Question Answering [54.57078061878619]
MCROSSはモーメントコントラスト学習フレームワークを導入し、クローゼのような解答確率と自然な問合せのサンプルペアを一致させる。
本手法は,教師付きシナリオとゼロショットシナリオの両方において,すべてのベースラインと比較して顕著な改善を実現している。
論文 参考訳(メタデータ) (2022-12-12T08:28:22Z) - DecAF: Joint Decoding of Answers and Logical Forms for Question
Answering over Knowledge Bases [81.19499764899359]
本稿では,論理形式と直解の両方を共同で生成する新しいフレームワークDecAFを提案する。
DecAFはWebQSP、FreebaseQA、GrailQAベンチマークで新しい最先端の精度を実現している。
論文 参考訳(メタデータ) (2022-09-30T19:51:52Z) - Can NLI Models Verify QA Systems' Predictions? [34.46234860404459]
私たちは、自然言語推論(NLI)を使用して堅牢な質問応答システムを構築します。
大規模なトレーニング済みモデルと最近のデータセットを活用して、強力な質問コンバータと非コンテキスト化モジュールを構築しています。
我々のNLIアプローチは、一般的に異なる領域にわたるQAモデルの信頼性推定を改善することができることを示す。
論文 参考訳(メタデータ) (2021-04-18T06:03:07Z) - Harvesting and Refining Question-Answer Pairs for Unsupervised QA [95.9105154311491]
教師なし質問回答(QA)を改善するための2つのアプローチを提案する。
まず、ウィキペディアから語彙的・構文的に異なる質問を抽出し、質問応答対のコーパスを自動的に構築する(RefQAと名づけられる)。
第2に、より適切な回答を抽出するためにQAモデルを活用し、RefQA上でデータを反復的に洗練する。
論文 参考訳(メタデータ) (2020-05-06T15:56:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。