論文の概要: The neural correlates of logical-mathematical symbol systems processing resemble that of spatial cognition more than natural language processing
- arxiv url: http://arxiv.org/abs/2406.14358v1
- Date: Thu, 20 Jun 2024 14:31:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:12:50.692870
- Title: The neural correlates of logical-mathematical symbol systems processing resemble that of spatial cognition more than natural language processing
- Title(参考訳): 論理・数学記号系処理のニューラル相関は自然言語処理よりも空間認知に類似している
- Authors: Yuannan Li, Shan Xu, Jia Liu,
- Abstract要約: 論理数学記号(LMS)を操作する能力は、人間特有の認知能力である。
これまでの研究では、自然言語処理と空間認知という2つの主要な候補が指摘されてきた。
本研究は, ドメインレベルでの神経相関を, メタアナリシスと合成マップの両方で比較した。
- 参考スコア(独自算出の注目度): 6.613108038833871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to manipulate logical-mathematical symbols (LMS), encompassing tasks such as calculation, reasoning, and programming, is a cognitive skill arguably unique to humans. Considering the relatively recent emergence of this ability in human evolutionary history, it has been suggested that LMS processing may build upon more fundamental cognitive systems, possibly through neuronal recycling. Previous studies have pinpointed two primary candidates, natural language processing and spatial cognition. Existing comparisons between these domains largely relied on task-level comparison, which may be confounded by task idiosyncrasy. The present study instead compared the neural correlates at the domain level with both automated meta-analysis and synthesized maps based on three representative LMS tasks, reasoning, calculation, and mental programming. Our results revealed a more substantial cortical overlap between LMS processing and spatial cognition, in contrast to language processing. Furthermore, in regions activated by both spatial and language processing, the multivariate activation pattern for LMS processing exhibited greater multivariate similarity to spatial cognition than to language processing. A hierarchical clustering analysis further indicated that typical LMS tasks were indistinguishable from spatial cognition tasks at the neural level, suggesting an inherent connection between these two cognitive processes. Taken together, our findings support the hypothesis that spatial cognition is likely the basis of LMS processing, which may shed light on the limitations of large language models in logical reasoning, particularly those trained exclusively on textual data without explicit emphasis on spatial content.
- Abstract(参考訳): 論理数学記号(LMS)を操る能力は、計算、推論、プログラミングといったタスクを包含しており、人間特有の認知スキルである。
ヒトの進化史におけるこの能力の比較的最近の出現を考えると、LMS処理はより基本的な認知システム、おそらくは神経細胞のリサイクルによって構築されることが示唆されている。
これまでの研究では、自然言語処理と空間認知という2つの主要な候補が指摘されてきた。
これらの領域間の既存の比較はタスクレベルの比較に大きく依存しており、タスクの慣用性によって構築される可能性がある。
本研究は,3つのLMSタスク,推論,計算,メンタルプログラミングに基づく自動メタアナリシスおよび合成マップを用いて,ドメインレベルでの神経相関を比較検討した。
言語処理とは対照的に,LMS処理と空間認知の間には,より大きな皮質重なりがみられた。
さらに、空間処理と言語処理の両方によって活性化される領域において、LMS処理の多変量活性化パターンは、言語処理よりも空間認知と多変量類似性を示した。
階層的クラスタリング分析により、典型的なLMSタスクは、神経レベルでの空間認知タスクと区別できないことが示され、これら2つの認知プロセスの間に固有の関係が示唆された。
本研究は,空間認知がLMS処理の基盤である可能性が示唆され,特に空間内容に明示的に重点を置いていないテキストデータに特化して訓練された大規模言語モデルの限界に光を当てる可能性があることを裏付けるものである。
関連論文リスト
- Lost in Translation: The Algorithmic Gap Between LMs and the Brain [8.799971499357499]
言語モデル(LM)は、様々な言語課題において印象的な性能を達成しているが、脳内の人間の言語処理との関係は未だ不明である。
本稿では、異なるレベルの分析において、LMと脳のギャップと重複について検討する。
神経科学からの洞察(空間性、モジュール性、内部状態、インタラクティブ学習など)が、より生物学的に妥当な言語モデルの開発にどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2024-07-05T17:43:16Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
空間推論は 生物学的と人工知能の両方において 重要な要素です
本稿では,現在最先端の大規模言語モデル (LLM) の空間的推論能力について包括的に検討する。
論文 参考訳(メタデータ) (2024-06-07T01:06:34Z) - Do Large Language Models Mirror Cognitive Language Processing? [43.68923267228057]
大規模言語モデル(LLM)は、テキスト理解と論理的推論において顕著な能力を示した。
認知科学において、脳認知処理信号は典型的には人間の言語処理を研究するために使用される。
我々はRepresentational similarity Analysis (RSA) を用いて、23個の主要LDMとfMRI信号のアライメントを測定する。
論文 参考訳(メタデータ) (2024-02-28T03:38:20Z) - Contextual Feature Extraction Hierarchies Converge in Large Language
Models and the Brain [12.92793034617015]
大規模言語モデル(LLM)がベンチマークタスクで高いパフォーマンスを達成するにつれ、より脳に近いものになることを示す。
また、モデルの性能と脳の類似性を改善する上で、文脈情報の重要性を示す。
論文 参考訳(メタデータ) (2024-01-31T08:48:35Z) - Divergences between Language Models and Human Brains [63.405788999891335]
最近の研究は、言語モデルの内部表現(LM)を用いて脳信号が効果的に予測できることを示唆している。
我々は、LMと人間が言語をどのように表現し、使用するかに明確な違いがあることを示します。
我々は、社会的・情緒的知性と身体的常識という、LMによってうまく捉えられていない2つの領域を識別する。
論文 参考訳(メタデータ) (2023-11-15T19:02:40Z) - Unveiling A Core Linguistic Region in Large Language Models [49.860260050718516]
本稿では,脳局在化をプロトタイプとして用いた類似研究を行う。
我々は、言語能力に対応する大規模言語モデルにおいて、中核領域を発見した。
我々は,言語能力の向上が必ずしもモデルの知識レベルの向上に伴わないことを観察する。
論文 参考訳(メタデータ) (2023-10-23T13:31:32Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
我々は、AIシステムにおけるアナロジーを支援するために、直感的な言語ベースの抽象化の使用について検討する。
具体的には,大規模事前学習言語モデル(PLM)を視覚的Raven's Progressive Matrices(RPM)に適用する。
PLMはゼロショットリレーショナル推論に顕著な能力を示し、人間のパフォーマンスを超え、教師付き視覚ベースの手法に近づいた。
論文 参考訳(メタデータ) (2023-05-28T04:22:26Z) - Information-Restricted Neural Language Models Reveal Different Brain
Regions' Sensitivity to Semantics, Syntax and Context [87.31930367845125]
テキストコーパスを用いて語彙言語モデルGloveと超語彙言語モデルGPT-2を訓練した。
そして、これらの情報制限されたモデルが、自然主義的テキストを聴く人間のfMRI信号の時間軸を予測することができるかを評価した。
分析の結果、言語に関わるほとんどの脳領域は、構文変数と意味変数の両方に敏感であるが、これらの影響の相対的な大きさは、これらの領域で大きく異なることがわかった。
論文 参考訳(メタデータ) (2023-02-28T08:16:18Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
自然言語処理モデルに認知言語処理信号を統合するためのCogAlignアプローチを提案する。
我々は、CogAlignが、パブリックデータセット上の最先端モデルよりも、複数の認知機能で大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2021-06-10T07:10:25Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。