論文の概要: Artificial Leviathan: Exploring Social Evolution of LLM Agents Through the Lens of Hobbesian Social Contract Theory
- arxiv url: http://arxiv.org/abs/2406.14373v1
- Date: Thu, 20 Jun 2024 14:42:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 13:12:50.672488
- Title: Artificial Leviathan: Exploring Social Evolution of LLM Agents Through the Lens of Hobbesian Social Contract Theory
- Title(参考訳): 人工レヴィアサン : ホッベシアン社会契約理論のレンズを通して LLM エージェントの社会進化を探る
- Authors: Gordon Dai, Weijia Zhang, Jinhan Li, Siqi Yang, Chidera Onochie lbe, Srihas Rao, Arthur Caetano, Misha Sra,
- Abstract要約: 大規模言語モデル(LLM)と人工知能(AI)の進歩は、大規模に計算社会科学研究の機会を提供する。
我々の研究は、複雑な社会的関係が動的に形成され、時間とともに進化するシミュレーションエージェント・ソサイエティを導入している。
我々は、この理論が仮定しているように、エージェントが秩序と安全保障と引き換えに絶対的な主権を放棄することで、残酷な「自然の状態」から逃れようとするかどうかを分析する。
- 参考スコア(独自算出の注目度): 8.80864059602965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of Large Language Models (LLMs) and advancements in Artificial Intelligence (AI) offer an opportunity for computational social science research at scale. Building upon prior explorations of LLM agent design, our work introduces a simulated agent society where complex social relationships dynamically form and evolve over time. Agents are imbued with psychological drives and placed in a sandbox survival environment. We conduct an evaluation of the agent society through the lens of Thomas Hobbes's seminal Social Contract Theory (SCT). We analyze whether, as the theory postulates, agents seek to escape a brutish "state of nature" by surrendering rights to an absolute sovereign in exchange for order and security. Our experiments unveil an alignment: Initially, agents engage in unrestrained conflict, mirroring Hobbes's depiction of the state of nature. However, as the simulation progresses, social contracts emerge, leading to the authorization of an absolute sovereign and the establishment of a peaceful commonwealth founded on mutual cooperation. This congruence between our LLM agent society's evolutionary trajectory and Hobbes's theoretical account indicates LLMs' capability to model intricate social dynamics and potentially replicate forces that shape human societies. By enabling such insights into group behavior and emergent societal phenomena, LLM-driven multi-agent simulations, while unable to simulate all the nuances of human behavior, may hold potential for advancing our understanding of social structures, group dynamics, and complex human systems.
- Abstract(参考訳): 大規模言語モデル(LLM)の出現と人工知能(AI)の進歩は、大規模に計算社会科学研究の機会を提供する。
LLMエージェント設計の先行調査に基づいて、複雑な社会的関係が時間とともに動的に形成・進化するシミュレーションエージェント社会を導入する。
エージェントには心理的なドライブが埋め込まれ、サンドボックスサバイバル環境に置かれる。
我々はトーマス・ホッブスのセミナル社会契約理論(SCT)のレンズを通してエージェント社会の評価を行う。
我々は、この理論が仮定しているように、エージェントが秩序と安全保障と引き換えに絶対的な主権を放棄することで、残酷な「自然の状態」から逃れようとするかどうかを分析する。
当初、エージェントは制約のない紛争に関わり、ホッブスの自然状態の描写を反映していました。
しかし、シミュレーションが進むにつれて、社会的契約が出現し、絶対的な主権の承認と相互協力に基づく平和的な共通目標の確立につながった。
このLLMエージェント・ソサエティの進化軌道とホッブスの理論的な説明の一致は、LLMが複雑な社会力学をモデル化し、人間の社会を形成する力を潜在的に再現する能力を示している。
集団行動や創発的な社会現象に関する洞察を可能とすることで、LLM駆動のマルチエージェントシミュレーションは、人間の行動のすべてのニュアンスをシミュレートすることができないが、社会構造、グループダイナミクス、複雑な人間のシステムに対する理解を深める可能性を秘めている。
関連論文リスト
- Exploring Prosocial Irrationality for LLM Agents: A Social Cognition View [21.341128731357415]
大規模言語モデル(LLM)は、人間のバイアスを頻繁に含んでいるデータのために幻覚に直面することが示されている。
幻覚特性を利用してLLMエージェントのソーシャルインテリジェンスを評価し,強化するオープンエンドマルチLLMエージェントフレームワークであるCogMirを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:13:33Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSimは、大規模言語モデル(LLM)における戦略的相互作用と協調的意思決定を研究するために設計された生成シミュレーションプラットフォームである。
最強のLSMエージェントを除く全てのエージェントは、GovSimの持続的均衡を達成することができず、生存率は54%以下である。
道徳的思考の理論である「大学化」に基づく推論を活用するエージェントは、持続可能性を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-04-25T15:59:16Z) - Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents [18.961470450132637]
本稿では、エージェントが文脈に深く関与し、明示的な指示なしに適応的な決定を行う自然現象の重要性を強調する。
我々は,3つの競争シナリオにまたがる自発的な協力を探究し,協力の段階的出現をシミュレートした。
論文 参考訳(メタデータ) (2024-02-19T18:00:53Z) - LLM-driven Imitation of Subrational Behavior : Illusion or Reality? [3.2365468114603937]
既存の作業は、複雑な推論タスクに対処し、人間のコミュニケーションを模倣する大規模言語モデルの能力を強調している。
そこで本研究では,LLMを用いて人工人体を合成し,サブリレーショナル・エージェント・ポリシーを学習する手法を提案する。
我々は,4つの単純なシナリオを通して,サブリレータリティをモデル化するフレームワークの能力について実験的に評価した。
論文 参考訳(メタデータ) (2024-02-13T19:46:39Z) - Agent Alignment in Evolving Social Norms [65.45423591744434]
本稿では,エージェント進化とアライメントのための進化的フレームワークであるEvolutionaryAgentを提案する。
社会規範が継続的に進化する環境では、エージェントは現在の社会規範に適応し、生存と増殖の確率が高くなる。
進化的エージェントは、一般的なタスクにおいてその能力を維持しながら、進化する社会規範と徐々に整合できることを示す。
論文 参考訳(メタデータ) (2024-01-09T15:44:44Z) - Simulating Public Administration Crisis: A Novel Generative Agent-Based
Simulation System to Lower Technology Barriers in Social Science Research [0.0]
本稿では,GPT-3.5大言語モデルに基づく社会シミュレーションのパラダイムを提案する。
これには、人間の認知、記憶、意思決定のフレームワークをエミュレートする生成エージェントの構築が含まれる。
エージェントはパーソナライズされたカスタマイズを示し、公開イベントは自然言語処理によってシームレスに組み込まれる。
論文 参考訳(メタデータ) (2023-11-12T20:48:01Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation
in Avalon Gameplay [57.202649879872624]
Avalonのゲームプレイにシームレスに適応する新しいフレームワークを提案する。
提案するフレームワークの中核は,エージェント間の効率的な通信と対話を可能にするマルチエージェントシステムである。
本研究は,適応的かつインテリジェントなエージェントを生成する上で,我々のフレームワークの有効性を示すものである。
論文 参考訳(メタデータ) (2023-10-23T14:35:26Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
本稿では,理論的洞察を用いた実用実験により,現代NLPシステム間の協調機構を解明する。
我々は, LLMエージェントからなる4つの独特な社会をつくり, それぞれのエージェントは, 特定の特性(容易性, 過信性)によって特徴づけられ, 異なる思考パターン(議論, ふりかえり)と協調する。
以上の結果から, LLMエージェントは, 社会心理学理論を反映した, 適合性やコンセンサスリーディングといった人間的な社会的行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T15:05:52Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。