Communication with Quantum Catalysts
- URL: http://arxiv.org/abs/2406.14395v1
- Date: Thu, 20 Jun 2024 15:13:44 GMT
- Title: Communication with Quantum Catalysts
- Authors: Yuqi Li, Junjing Xing, Dengke Qu, Lei Xiao, Zhaobing Fan, Zhu-Jun Zheng, Haitao Ma, Peng Xue, Kishor Bharti, Dax Enshan Koh, Yunlong Xiao,
- Abstract summary: We employ embezzling quantum catalysts to enhance transmission of both quantum and classical information.
Our results reveal that using embezzling catalysts augments the efficiency of information transmission across noisy quantum channels.
We introduce catalytic superdense coding, demonstrating how embezzling catalysts can enhance the transmission of classical information.
- Score: 10.350716571366277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Communication is essential for advancing science and technology. Quantum communication, in particular, benefits from the use of catalysts. During the communication process, these catalysts enhance performance while remaining unchanged. Although chemical catalysts that undergo deactivation typically perform worse than those that remain unaffected, quantum catalysts, referred to as embezzling catalysts, can surprisingly outperform their non-deactivating counterparts despite experiencing slight alterations. In this work, we employ embezzling quantum catalysts to enhance the transmission of both quantum and classical information. Our results reveal that using embezzling catalysts augments the efficiency of information transmission across noisy quantum channels, ensuring a non-zero catalytic channel capacity. Furthermore, we introduce catalytic superdense coding, demonstrating how embezzling catalysts can enhance the transmission of classical information. Finally, we explore methods to reduce the dimensionality of catalysts, a step toward making quantum catalysis a practical reality.
Related papers
- Teleportation with Embezzling Catalysts [10.65878656579232]
We present teleportation protocols with embezzling catalyst that can achieve arbitrarily high fidelity.
We show that some embezzling catalysts are universal, meaning that they can improve the teleportation fidelity for any pre-shared entanglement.
arXiv Detail & Related papers (2024-06-20T15:02:20Z) - Finite-size catalysis in quantum resource theories [1.1510009152620668]
Quantum, the ability to enable previously impossible transformations by using auxiliary systems without degrading them, has emerged as a powerful tool in various resource theories.
We show how one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
Notably, we discover a fascinating phenomenon of catalytic resonance: tailoring the catalysts's state, one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
arXiv Detail & Related papers (2024-05-14T19:08:55Z) - Catalysis distillation neural network for the few shot open catalyst
challenge [1.1878820609988694]
This paper introduces Few-Shot Open Catalyst Challenge 2023, a competition aimed at advancing the application of machine learning for predicting reactions.
We propose a machine learning approach based on a framework called Catalysis Distillation Graph Neural Network (CDGNN)
Our results demonstrate that CDGNN effectively learns embeddings from catalytic structures, enabling the capture of structure-adsorption relationships.
arXiv Detail & Related papers (2023-05-31T04:23:56Z) - No-go theorem for entanglement distillation using catalysis [49.24817625059456]
We show that catalytic transformations can never allow for the distillation of entanglement from a bound entangled state.
This precludes the possibility that entanglement theoryally reversible based operations under even permissive choices.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Catalysis of entanglement and other quantum resources [39.58317527488534]
Instead of chemical reactions, quantum enhances our ability to convert quantum states into each other under physical constraints.
This article reviews the most recent developments in quantum preservation and gives a historical overview of this research direction.
arXiv Detail & Related papers (2022-07-12T17:15:18Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Correlation in Catalysts Enables Arbitrary Manipulation of Quantum
Coherence [0.0]
We show that allowing correlation among multiple catalysts can offer arbitrary power in the manipulation of quantum coherence.
This presents a new type of embezzlement-like phenomenon, in which the resource embezzlement is attributed to the correlation generated among multiple catalysts.
arXiv Detail & Related papers (2021-06-23T18:00:04Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.