Transferable Boltzmann Generators
- URL: http://arxiv.org/abs/2406.14426v2
- Date: Sat, 01 Feb 2025 17:02:32 GMT
- Title: Transferable Boltzmann Generators
- Authors: Leon Klein, Frank NoƩ,
- Abstract summary: We propose a first framework for Boltzmann Generators that are transferable across chemical space.<n>We show that our proposed architecture enhances the efficiency of Boltzmann Generators trained on single molecular systems.
- Score: 6.36887173111677
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The generation of equilibrium samples of molecular systems has been a long-standing problem in statistical physics. Boltzmann Generators are a generative machine learning method that addresses this issue by learning a transformation via a normalizing flow from a simple prior distribution to the target Boltzmann distribution of interest. Recently, flow matching has been employed to train Boltzmann Generators for small molecular systems in Cartesian coordinates. We extend this work and propose a first framework for Boltzmann Generators that are transferable across chemical space, such that they predict zero-shot Boltzmann distributions for test molecules without being retrained for these systems. These transferable Boltzmann Generators allow approximate sampling from the target distribution of unseen systems, as well as efficient reweighting to the target Boltzmann distribution. The transferability of the proposed framework is evaluated on dipeptides, where we show that it generalizes efficiently to unseen systems. Furthermore, we demonstrate that our proposed architecture enhances the efficiency of Boltzmann Generators trained on single molecular systems.
Related papers
- Scalable Equilibrium Sampling with Sequential Boltzmann Generators [60.00515282300297]
We extend the Boltzmann generator framework and introduce Sequential Boltzmann generators with two key improvements.
The first is a highly efficient non-equivariant Transformer-based normalizing flow operating directly on all-atom Cartesian coordinates.
We demonstrate the first equilibrium sampling in Cartesian coordinates of tri, tetra, and hexapeptides that were so far intractable for prior Boltzmann generators.
arXiv Detail & Related papers (2025-02-25T18:59:13Z) - Flow Perturbation to Accelerate Unbiased Sampling of Boltzmann distribution [2.103187931015573]
Flow-based generative models have been employed for sampling the Boltzmann distribution, but their application is hindered by the computational cost of obtaining the Jacobian of the flow.
We introduce the flow perturbation method, which incorporates optimized perturbations into the flow.
By reweighting trajectories generated by the perturbed flow, our method achieves unbiased sampling of the Boltzmann distribution with orders of magnitude speedup.
arXiv Detail & Related papers (2024-07-15T12:29:17Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Energy based diffusion generator for efficient sampling of Boltzmann distributions [11.855642710689704]
Energy-Based Diffusion Generator (EDG) is a novel approach that integrates ideas from variational autoencoders and diffusion models.
EDG is simulation-free, eliminating the need to solve ordinary or differential equations during training.
arXiv Detail & Related papers (2024-01-04T06:03:46Z) - Transition Path Sampling with Boltzmann Generator-based MCMC Moves [49.69940954060636]
Current approaches to sample transition paths use Markov chain Monte Carlo and rely on time-intensive molecular dynamics simulations to find new paths.
Our approach operates in the latent space of a normalizing flow that maps from the molecule's Boltzmann distribution to a Gaussian, where we propose new paths without requiring molecular simulations.
arXiv Detail & Related papers (2023-12-08T20:05:33Z) - Universal representation by Boltzmann machines with Regularised Axons [34.337412054122076]
We show that regularised Boltzmann machines preserve the ability to represent arbitrary distributions.
We also show that regularised Boltzmann machines can store exponentially many arbitrarily correlated visible patterns with perfect retrieval.
arXiv Detail & Related papers (2023-10-22T20:05:47Z) - Equivariant flow matching [0.9208007322096533]
We introduce equivariant flow matching, a new training objective for equivariant continuous normalizing flows (CNFs)
Equivariant flow matching exploits the physical symmetries of the target energy for efficient, simulation-free training of equivariant CNFs.
Our results show that the equivariant flow matching objective yields flows with shorter integration paths, improved sampling efficiency, and higher scalability compared to existing methods.
arXiv Detail & Related papers (2023-06-26T19:40:10Z) - Learning Probabilistic Models from Generator Latent Spaces with Hat EBM [81.35199221254763]
This work proposes a method for using any generator network as the foundation of an Energy-Based Model (EBM)
Experiments show strong performance of the proposed method on (1) unconditional ImageNet synthesis at 128x128 resolution, (2) refining the output of existing generators, and (3) learning EBMs that incorporate non-probabilistic generators.
arXiv Detail & Related papers (2022-10-29T03:55:34Z) - Macroscopic noise amplification by asymmetric dyads in non-Hermitian
optical systems for generative diffusion models [55.2480439325792]
asymmetric non-Hermitian dyads are promising candidates for efficient sensors and ultra-fast random number generators.
integrated light emission from such asymmetric dyads can be efficiently used for all-optical degenerative diffusion models of machine learning.
arXiv Detail & Related papers (2022-06-24T10:19:36Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z) - Generative Semantic Hashing Enhanced via Boltzmann Machines [61.688380278649056]
Existing generative-hashing methods mostly assume a factorized form for the posterior distribution.
We propose to employ the distribution of Boltzmann machine as the retrievalal posterior.
We show that by effectively modeling correlations among different bits within a hash code, our model can achieve significant performance gains.
arXiv Detail & Related papers (2020-06-16T01:23:39Z) - Entropy, Free Energy, and Work of Restricted Boltzmann Machines [0.08594140167290096]
We analyze the training process of the restricted Boltzmann machine in the context of statistical physics.
We demonstrate the growth of the correlation between the visible and hidden layers via the subadditivity of entropies as the training proceeds.
We discuss the Jarzynski equality which connects the path average of the exponential function of the work and the difference in free energies before and after training.
arXiv Detail & Related papers (2020-04-10T04:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.