Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease
- URL: http://arxiv.org/abs/2406.14442v1
- Date: Thu, 20 Jun 2024 16:06:39 GMT
- Title: Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease
- Authors: Elisa Gómez de Lope, Saurabh Deshpande, Ramón Viñas Torné, Pietro Liò, Enrico Glaab, Stéphane P. A. Bordas,
- Abstract summary: Graph neural networks have emerged as promising alternatives to classical statistical and machine learning methods.
This study evaluates various graph representation learning models for case-control classification.
We compare topologies derived from sample similarity networks and molecular interaction networks, including protein-protein and metabolite-metabolite interactions.
- Score: 13.630617713928197
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Omics data analysis is crucial for studying complex diseases, but its high dimensionality and heterogeneity challenge classical statistical and machine learning methods. Graph neural networks have emerged as promising alternatives, yet the optimal strategies for their design and optimization in real-world biomedical challenges remain unclear. This study evaluates various graph representation learning models for case-control classification using high-throughput biological data from Parkinson's disease and control samples. We compare topologies derived from sample similarity networks and molecular interaction networks, including protein-protein and metabolite-metabolite interactions (PPI, MMI). Graph Convolutional Network (GCNs), Chebyshev spectral graph convolution (ChebyNet), and Graph Attention Network (GAT), are evaluated alongside advanced architectures like graph transformers, the graph U-net, and simpler models like multilayer perceptron (MLP). These models are systematically applied to transcriptomics and metabolomics data independently. Our comparative analysis highlights the benefits and limitations of various architectures in extracting patterns from omics data, paving the way for more accurate and interpretable models in biomedical research.
Related papers
- Comparative Analysis of Multi-Omics Integration Using Advanced Graph Neural Networks for Cancer Classification [40.45049709820343]
Multi-omics data integration poses significant challenges due to the high dimensionality, data complexity, and distinct characteristics of various omics types.
This study evaluates three graph neural network architectures for multi-omics (MO) integration based on graph-convolutional networks (GCN), graph-attention networks (GAT), and graph-transformer networks (GTN)
arXiv Detail & Related papers (2024-10-05T16:17:44Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
Current biological networks are noisy, sparse, and incomplete. Experimental identification of such interactions is both time-consuming and expensive.
Deep graph neural networks have shown their effectiveness in modeling graph-structured data and achieved good performance in biomedical interaction prediction.
Our proposed method enables the graph convolutional networks to dynamically adapt their depths to accommodate an increasing number of interactions.
arXiv Detail & Related papers (2022-11-22T20:44:28Z) - A Comparative Study of Graph Neural Networks for Shape Classification in
Neuroimaging [17.775145204666874]
We present an overview of the current state-of-the-art in geometric deep learning for shape classification in neuroimaging.
We find that using FPFH as node features substantially improves GNN performance and generalisation to out-of-distribution data.
We then confirm these results hold for a clinically relevant task, using the classification of Alzheimer's disease.
arXiv Detail & Related papers (2022-10-29T19:03:01Z) - Neural Graphical Models [2.6842860806280058]
We introduce Neural Graphical Models (NGMs) to represent complex feature dependencies with reasonable computational costs.
We capture the dependency structure between the features along with their complex function representations by using a neural network as a multi-task learning framework.
NGMs can fit generic graph structures including directed, undirected and mixed-edge graphs as well as support mixed input data types.
arXiv Detail & Related papers (2022-10-02T07:59:51Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks.
In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning.
arXiv Detail & Related papers (2022-07-14T20:03:52Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Weakly-supervised Graph Meta-learning for Few-shot Node Classification [53.36828125138149]
We propose a new graph meta-learning framework -- Graph Hallucination Networks (Meta-GHN)
Based on a new robustness-enhanced episodic training, Meta-GHN is meta-learned to hallucinate clean node representations from weakly-labeled data.
Extensive experiments demonstrate the superiority of Meta-GHN over existing graph meta-learning studies.
arXiv Detail & Related papers (2021-06-12T22:22:10Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.