Maintenance Required: Updating and Extending Bootstrapped Human Activity Recognition Systems for Smart Homes
- URL: http://arxiv.org/abs/2406.14446v1
- Date: Thu, 20 Jun 2024 16:08:40 GMT
- Title: Maintenance Required: Updating and Extending Bootstrapped Human Activity Recognition Systems for Smart Homes
- Authors: Shruthi K. Hiremath, Thomas Ploetz,
- Abstract summary: Off-the-shelf HAR systems are effective in limited capacity for an individual home.
Previous work has successfully targeted the initial phase.
We build on bootstrapped HAR systems and introduce an effective updating and extension procedure.
- Score: 0.11029371407785957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing human activity recognition (HAR) systems for smart homes is not straightforward due to varied layouts of the homes and their personalized settings, as well as idiosyncratic behaviors of residents. As such, off-the-shelf HAR systems are effective in limited capacity for an individual home, and HAR systems often need to be derived "from scratch", which comes with substantial efforts and often is burdensome to the resident. Previous work has successfully targeted the initial phase. At the end of this initial phase, we identify seed points. We build on bootstrapped HAR systems and introduce an effective updating and extension procedure for continuous improvement of HAR systems with the aim of keeping up with ever changing life circumstances. Our method makes use of the seed points identified at the end of the initial bootstrapping phase. A contrastive learning framework is trained using these seed points and labels obtained for the same. This model is then used to improve the segmentation accuracy of the identified prominent activities. Improvements in the activity recognition system through this procedure help model the majority of the routine activities in the smart home. We demonstrate the effectiveness of our procedure through experiments on the CASAS datasets that show the practical value of our approach.
Related papers
- Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
"Lifelong Learning" systems are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability.
We show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems.
arXiv Detail & Related papers (2023-01-18T21:58:54Z) - Learning Goal-Conditioned Policies Offline with Self-Supervised Reward
Shaping [94.89128390954572]
We propose a novel self-supervised learning phase on the pre-collected dataset to understand the structure and the dynamics of the model.
We evaluate our method on three continuous control tasks, and show that our model significantly outperforms existing approaches.
arXiv Detail & Related papers (2023-01-05T15:07:10Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
We propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED)
In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition.
arXiv Detail & Related papers (2022-09-14T11:08:48Z) - Context-Aware Sequence Alignment using 4D Skeletal Augmentation [67.05537307224525]
Temporal alignment of fine-grained human actions in videos is important for numerous applications in computer vision, robotics, and mixed reality.
We propose a novel context-aware self-supervised learning architecture to align sequences of actions.
Specifically, CASA employs self-attention and cross-attention mechanisms to incorporate the spatial and temporal context of human actions.
arXiv Detail & Related papers (2022-04-26T10:59:29Z) - Assessing the State of Self-Supervised Human Activity Recognition using
Wearables [6.777825307593778]
Self-supervised learning in the field of wearables-based human activity recognition (HAR)
Self-supervised methods enable a host of new application domains such as, for example, domain adaptation and transfer across sensor positions, activities etc.
arXiv Detail & Related papers (2022-02-22T02:21:50Z) - Continually Learning Self-Supervised Representations with Projected
Functional Regularization [39.92600544186844]
Recent self-supervised learning methods are able to learn high-quality image representations and are closing the gap with supervised methods.
These methods are unable to acquire new knowledge incrementally -- they are, in fact, mostly used only as a pre-training phase with IID data.
To prevent forgetting of previous knowledge, we propose the usage of functional regularization.
arXiv Detail & Related papers (2021-12-30T11:59:23Z) - Explainable Activity Recognition for Smart Home Systems [9.909901668370589]
We build on insights from Explainable Artificial Intelligence (XAI) techniques to develop an explainable activity recognition framework.
Our results show that the XAI approach, SHAP, has a 92% success rate in generating sensible explanations.
In 83% of sampled scenarios users preferred natural language explanations over a simple activity label.
arXiv Detail & Related papers (2021-05-20T14:35:51Z) - Contrastive Predictive Coding for Human Activity Recognition [5.766384728949437]
We introduce the Contrastive Predictive Coding framework to human activity recognition, which captures the long-term temporal structure of sensor data streams.
CPC-based pre-training is self-supervised, and the resulting learned representations can be integrated into standard activity chains.
It leads to significantly improved recognition performance when only small amounts of labeled training data are available.
arXiv Detail & Related papers (2020-12-09T21:44:36Z) - Intra- and Inter-Action Understanding via Temporal Action Parsing [118.32912239230272]
We construct a new dataset developed on sport videos with manual annotations of sub-actions, and conduct a study on temporal action parsing on top.
Our study shows that a sport activity usually consists of multiple sub-actions and that the awareness of such temporal structures is beneficial to action recognition.
We also investigate a number of temporal parsing methods, and thereon devise an improved method that is capable of mining sub-actions from training data without knowing the labels of them.
arXiv Detail & Related papers (2020-05-20T17:45:18Z) - Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less
Forgetting [66.45372974713189]
We propose a recall and learn mechanism, which adopts the idea of multi-task learning and jointly learns pretraining tasks and downstream tasks.
Experiments show that our method achieves state-of-the-art performance on the GLUE benchmark.
We provide open-source RecAdam, which integrates the proposed mechanisms into Adam to facility the NLP community.
arXiv Detail & Related papers (2020-04-27T08:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.