論文の概要: SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents
- arxiv url: http://arxiv.org/abs/2406.12952v2
- Date: Sun, 17 Nov 2024 09:40:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:37.542952
- Title: SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents
- Title(参考訳): SWT-Bench: コードエージェントによる実世界のバグフィックスのテストと検証
- Authors: Niels Mündler, Mark Niklas Müller, Jingxuan He, Martin Vechev,
- Abstract要約: ユーザ問題をテストケースに形式化するLLMベースのコードエージェントについて検討する。
我々は人気のあるGitHubリポジトリに基づいた新しいベンチマークを提案し、現実世界の問題、地味なバグフィックス、ゴールデンテストを含む。
コード修復用に設計されたコードエージェントは,テスト生成用に設計されたシステムの性能を上回っている。
- 参考スコア(独自算出の注目度): 10.730852617039451
- License:
- Abstract: Rigorous software testing is crucial for developing and maintaining high-quality code, making automated test generation a promising avenue for both improving software quality and boosting the effectiveness of code generation methods. However, while code generation with Large Language Models (LLMs) is an extraordinarily active research area, test generation remains relatively unexplored. We address this gap and investigate the capability of LLM-based Code Agents to formalize user issues into test cases. To this end, we propose a novel benchmark based on popular GitHub repositories, containing real-world issues, ground-truth bug-fixes, and golden tests. We find that LLMs generally perform surprisingly well at generating relevant test cases, with Code Agents designed for code repair exceeding the performance of systems designed specifically for test generation. Further, as test generation is a similar but more structured task than code generation, it allows for a more fine-grained analysis using issue reproduction rate and coverage changes, providing a dual metric for analyzing systems designed for code repair. Finally, we find that generated tests are an effective filter for proposed code fixes, doubling the precision of SWE-Agent. We release all data and code at https://github.com/logic-star-ai/SWT-Bench
- Abstract(参考訳): 厳格なソフトウェアテストは、高品質なコードの開発とメンテナンスに不可欠であり、自動テスト生成は、ソフトウェアの品質を改善し、コード生成方法の有効性を高めるために、有望な方法である。
しかし、Large Language Models (LLMs) を用いたコード生成は極めて活発な研究領域であるが、テスト生成は比較的未探索のままである。
このギャップに対処し、LLMベースのコードエージェントがユーザ問題をテストケースに形式化する能力について検討する。
この目的のために、私たちは人気のあるGitHubリポジトリに基づいた新しいベンチマークを提案し、現実世界の問題、地味なバグフィックス、ゴールデンテストを含む。
コード修復用に設計されたコードエージェントは、テスト生成用に特別に設計されたシステムの性能を上回っている。
さらに、テスト生成はコード生成と似ているがより構造化されたタスクであるため、問題再現率とカバレッジの変更を使用してよりきめ細かい分析を可能にし、コード修復用に設計されたシステムを分析するための二重メトリックを提供する。
最後に、生成されたテストは、SWE-Agentの精度を2倍にすることで、提案するコード修正に有効なフィルタであることが判明した。
私たちはすべてのデータとコードをhttps://github.com/logic-star-ai/SWT-Benchでリリースします。
関連論文リスト
- CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
Code-Development Benchmark (Codev-Bench)は、細粒度で現実世界、リポジトリレベル、開発者中心の評価フレームワークです。
Codev-Agentは、リポジトリのクローリングを自動化し、実行環境を構築し、既存のユニットテストから動的呼び出しチェーンを抽出し、データ漏洩を避けるために新しいテストサンプルを生成するエージェントベースのシステムである。
論文 参考訳(メタデータ) (2024-10-02T09:11:10Z) - TestGenEval: A Real World Unit Test Generation and Test Completion Benchmark [24.14654309612826]
TestGenEvalは、1,210のコードから68,647のテストと、11の保守されたPythonリポジトリにまたがるテストファイルペアで構成されている。
初期テストのオーサリング、テストスイートの補完、コードカバレッジの改善をカバーしている。
パラメータは7Bから405Bまで様々である。
論文 参考訳(メタデータ) (2024-10-01T14:47:05Z) - RepoMasterEval: Evaluating Code Completion via Real-World Repositories [12.176098357240095]
RepoMasterEvalは、現実のPythonとTypeScriptリポジトリから構築されたコード補完モデルを評価するための新しいベンチマークである。
モデル生成コードのテスト精度を向上させるため,テストケースの有効性を測定するために突然変異試験を用いる。
6つの最先端モデルに対する実証的な評価は、テスト議論がベンチマークの精度向上に重要であることを示している。
論文 参考訳(メタデータ) (2024-08-07T03:06:57Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
検索拡張生成を用いたコード生成の系統的,大規模な解析を行う。
まず、コード生成タスクの3つのカテゴリを含む総合的な評価ベンチマークであるCodeRAG-Benchをキュレートする。
CodeRAG-Bench上のトップパフォーマンスモデルについて、1つまたは複数のソースから検索したコンテキストを提供することにより検討する。
論文 参考訳(メタデータ) (2024-06-20T16:59:52Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - Large Language Models as Test Case Generators: Performance Evaluation and Enhancement [3.5398126682962587]
大規模言語モデルが高品質なテストケースをいかに生み出すかを検討する。
本稿では,テストインプットとテストアウトプットの生成を分離するemphTestChainというマルチエージェントフレームワークを提案する。
以上の結果から,TestChainはベースラインのマージンを大きく上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-04-20T10:27:01Z) - Test-Driven Development for Code Generation [0.850206009406913]
大きな言語モデル(LLM)は、問題ステートメントから直接コードスニペットを生成する重要な機能を示している。
本稿では,テスト駆動開発(TDD)をAI支援コード生成プロセスに組み込む方法について検討する。
論文 参考訳(メタデータ) (2024-02-21T04:10:12Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Code-Aware Prompting: A study of Coverage Guided Test Generation in Regression Setting using LLM [32.44432906540792]
テスト生成における大規模言語モデルのコード認識促進戦略であるSymPromptを提案する。
SymPromptは、正しいテスト世代を5倍に増やし、CodeGen2の相対カバレッジを26%向上させる。
特に、GPT-4に適用すると、SymPromptはベースラインのプロンプト戦略に比べて2倍以上のカバレッジが向上する。
論文 参考訳(メタデータ) (2024-01-31T18:21:49Z) - CodeT: Code Generation with Generated Tests [49.622590050797236]
テストケースを自動的に生成するための事前学習言語モデルについて検討する。
CodeTは生成されたテストケースを使ってコードソリューションを実行し、次に最良のソリューションを選択します。
我々は,HumanEvalとMBPPのベンチマークを用いて,5種類の事前学習モデル上でCodeTを評価する。
論文 参考訳(メタデータ) (2022-07-21T10:18:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。