論文の概要: MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading
- arxiv url: http://arxiv.org/abs/2406.14537v1
- Date: Thu, 20 Jun 2024 17:48:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 12:09:55.248220
- Title: MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading
- Title(参考訳): MacroHFT:高頻度取引におけるメモリ拡張コンテキスト認識強化学習
- Authors: Chuqiao Zong, Chaojie Wang, Molei Qin, Lei Feng, Xinrun Wang, Bo An,
- Abstract要約: 強化学習(RL)は、高周波取引(HFT)のもう一つの魅力あるアプローチとなっている。
我々は,新しいメモリ拡張コンテキスト認識強化学習手法であるOn HFT, empha.k. MacroHFTを提案する。
マイクロレベルのトレーディングタスクにおいて,MacroHFTは最先端のパフォーマンスを実現することができることを示す。
- 参考スコア(独自算出の注目度): 20.3106468936159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-frequency trading (HFT) that executes algorithmic trading in short time scales, has recently occupied the majority of cryptocurrency market. Besides traditional quantitative trading methods, reinforcement learning (RL) has become another appealing approach for HFT due to its terrific ability of handling high-dimensional financial data and solving sophisticated sequential decision-making problems, \emph{e.g.,} hierarchical reinforcement learning (HRL) has shown its promising performance on second-level HFT by training a router to select only one sub-agent from the agent pool to execute the current transaction. However, existing RL methods for HFT still have some defects: 1) standard RL-based trading agents suffer from the overfitting issue, preventing them from making effective policy adjustments based on financial context; 2) due to the rapid changes in market conditions, investment decisions made by an individual agent are usually one-sided and highly biased, which might lead to significant loss in extreme markets. To tackle these problems, we propose a novel Memory Augmented Context-aware Reinforcement learning method On HFT, \emph{a.k.a.} MacroHFT, which consists of two training phases: 1) we first train multiple types of sub-agents with the market data decomposed according to various financial indicators, specifically market trend and volatility, where each agent owns a conditional adapter to adjust its trading policy according to market conditions; 2) then we train a hyper-agent to mix the decisions from these sub-agents and output a consistently profitable meta-policy to handle rapid market fluctuations, equipped with a memory mechanism to enhance the capability of decision-making. Extensive experiments on various cryptocurrency markets demonstrate that MacroHFT can achieve state-of-the-art performance on minute-level trading tasks.
- Abstract(参考訳): アルゴリズム取引を短時間で行う高周波取引(HFT)は、最近暗号通貨市場の大半を占めた。
従来の量的トレーディング法以外に、高次元の金融データを処理し、洗練されたシーケンシャルな意思決定問題を解決するという素晴らしい能力により、強化学習(RL)はHFTにとって魅力的なアプローチとなり、例えば、階層的強化学習(HRL)は、エージェントプールから1つのサブエージェントのみを選択して現在のトランザクションを実行するように、ルータをトレーニングすることで、2段階のHFTに対して有望な性能を示した。
しかし、HFT の既存の RL メソッドには、まだいくつかの欠陥がある。
1)標準のRLベースのトレーディングエージェントは、過度に適合する問題に悩まされ、金融状況に応じて効果的な政策調整ができない。
2) 市場状況の急激な変化により、個々のエージェントによる投資決定は通常、一方的かつ偏見が高く、極端な市場において大きな損失をもたらす可能性がある。
これらの問題に対処するために,HFT, \emph{a.k.a.} MacroHFTという2つの学習段階からなる新しいメモリ拡張コンテキスト認識強化学習手法を提案する。
1)各業者が市場状況に応じて取引政策を調整するための条件付きアダプタを所有する市場動向・ボラティリティなど、さまざまな金融指標に基づいて市場データを分解した複数のサブエージェントをまず訓練する。
2)これらのサブエージェントの意思決定を混在させるため,ハイパーエージェントを訓練し,意思決定能力を高めるためのメモリ機構を備えた迅速な市場変動に対応するために,一貫した収益性のあるメタポリティクスを出力する。
さまざまな暗号通貨市場での大規模な実験により、マクロHFTはマイクロレベルのトレーディングタスクで最先端のパフォーマンスを達成できることを示した。
関連論文リスト
- When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Can machine learning unlock new insights into high-frequency trading? [0.0]
我々は、流動性要求とHFT戦略の供給を識別する新しい指標を導入する。
我々の指標は、金融市場における情報生産プロセスの理解に影響を及ぼす。
論文 参考訳(メタデータ) (2024-05-13T18:28:39Z) - Combining Deep Learning on Order Books with Reinforcement Learning for
Profitable Trading [0.0]
本研究は,注文フローを用いた複数地平線におけるリターン予測と,5つの金融機器を対象とした3つの時間差不均衡学習モデルを訓練することに焦点を当てる。
この結果は潜在的な可能性を証明しているが、小売取引コスト、滑り込み、スプレッド・揺らぎを完全に処理するためには、一貫した黒字取引のためのさらなる最小限の修正が必要である。
論文 参考訳(メタデータ) (2023-10-24T15:58:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
強化学習技術は量的取引において顕著な成功を収めた。
既存のRLベースのマーケットメイキング手法のほとんどは、単価レベルの戦略の最適化に重点を置いている。
Imitative Market Maker (IMM) は、準最適信号に基づく専門家の知識と直接的な政策相互作用の両方を活用する新しいRLフレームワークである。
論文 参考訳(メタデータ) (2023-08-17T11:04:09Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Deep Reinforcement Learning Approach for Trading Automation in The Stock
Market [0.0]
本稿では,Deep Reinforcement Learning (DRL)アルゴリズムを用いて,株式市場における収益性取引を生成するモデルを提案する。
我々は、市場が課す制約を考慮して、部分的に観測されたマルコフ決定プロセス(POMDP)モデルとして取引問題を定式化する。
次に, Twin Delayed Deep Deterministic Policy Gradient (TD3) アルゴリズムを用いて, 2.68 Sharpe Ratio を未知のデータセットに報告し, 定式化した POMDP 問題を解く。
論文 参考訳(メタデータ) (2022-07-05T11:34:29Z) - DeepScalper: A Risk-Aware Reinforcement Learning Framework to Capture
Fleeting Intraday Trading Opportunities [33.28409845878758]
日内取引のための深層強化学習フレームワークであるDeepScalperを提案する。
我々は、DeepScalperが4つの財務基準において、最先端のベースラインを著しく上回っていることを示す。
論文 参考訳(メタデータ) (2021-12-15T15:24:02Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
再生可能エネルギー源統合の成功の鍵となる要素は、エネルギー貯蔵の利用である。
欧州の継続的な日内市場におけるエネルギー貯蔵の戦略的関与をモデル化するための新しい枠組みを提案する。
本アルゴリズムの分散バージョンは, サンプル効率のため, この問題を解決するために選択される。
その結果, エージェントは, ベンチマーク戦略よりも平均的収益率の高い政策に収束することが示唆された。
論文 参考訳(メタデータ) (2020-04-13T13:50:13Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。