論文の概要: CooHOI: Learning Cooperative Human-Object Interaction with Manipulated Object Dynamics
- arxiv url: http://arxiv.org/abs/2406.14558v1
- Date: Thu, 20 Jun 2024 17:59:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 12:09:55.230315
- Title: CooHOI: Learning Cooperative Human-Object Interaction with Manipulated Object Dynamics
- Title(参考訳): Coohoi: 操作対象ダイナミクスを用いた協調的オブジェクトインタラクションの学習
- Authors: Jiawei Gao, Ziqin Wang, Zeqi Xiao, Jingbo Wang, Tai Wang, Jinkun Cao, Xiaolin Hu, Si Liu, Jifeng Dai, Jiangmiao Pang,
- Abstract要約: 本稿では,2段階の学習パラダイムを通した多文字オブジェクトを扱う新しいフレームワークであるCooHOIを紹介する。
CooHOIは本質的に効率的であり、マルチキャラクタ相互作用のモーションキャプチャーデータに依存しず、より多くの参加者を含むようにシームレスに拡張することができる。
- 参考スコア(独自算出の注目度): 44.30880626337739
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen significant advancements in humanoid control, largely due to the availability of large-scale motion capture data and the application of reinforcement learning methodologies. However, many real-world tasks, such as moving large and heavy furniture, require multi-character collaboration. Given the scarcity of data on multi-character collaboration and the efficiency challenges associated with multi-agent learning, these tasks cannot be straightforwardly addressed using training paradigms designed for single-agent scenarios. In this paper, we introduce Cooperative Human-Object Interaction (CooHOI), a novel framework that addresses multi-character objects transporting through a two-phase learning paradigm: individual skill acquisition and subsequent transfer. Initially, a single agent learns to perform tasks using the Adversarial Motion Priors (AMP) framework. Following this, the agent learns to collaborate with others by considering the shared dynamics of the manipulated object during parallel training using Multi Agent Proximal Policy Optimization (MAPPO). When one agent interacts with the object, resulting in specific object dynamics changes, the other agents learn to respond appropriately, thereby achieving implicit communication and coordination between teammates. Unlike previous approaches that relied on tracking-based methods for multi-character HOI, CooHOI is inherently efficient, does not depend on motion capture data of multi-character interactions, and can be seamlessly extended to include more participants and a wide range of object types
- Abstract(参考訳): 近年、大規模なモーションキャプチャーデータと強化学習手法の適用により、ヒューマノイド制御が大幅に進歩している。
しかし、大型で重い家具を移動させるような現実的なタスクの多くは、複数文字の協調を必要とする。
マルチエージェント協調に関するデータの不足とマルチエージェント学習に関連する効率上の課題を考えると、これらのタスクは単一エージェントシナリオ用に設計されたトレーニングパラダイムを使って簡単に対処することはできない。
本稿では,2段階の学習パラダイムを通した複数文字オブジェクトを扱う新しいフレームワークであるCooHOIを紹介する。
最初は、単一のエージェントがAdversarial Motion Priors (AMP)フレームワークを使ってタスクを実行することを学習する。
その後、エージェントは、MAPPO(Multi Agent Proximal Policy Optimization)を用いた並列トレーニングにおいて、操作対象の共有ダイナミクスを考慮し、他のエージェントと協調することを学ぶ。
あるエージェントがオブジェクトと対話し、特定のオブジェクトのダイナミクスが変化すると、他のエージェントは適切な応答を学習し、暗黙のコミュニケーションとチームメイト間の調整を行う。
従来のマルチキャラクタHOIのトラッキングに基づく手法とは異なり、CooHOIは本質的に効率的であり、マルチキャラクタインタラクションのモーションキャプチャデータに依存しず、より多くの参加者と幅広いオブジェクトタイプを含むようにシームレスに拡張できる。
関連論文リスト
- Towards Collaborative Intelligence: Propagating Intentions and Reasoning for Multi-Agent Coordination with Large Language Models [41.95288786980204]
現在のエージェントフレームワークは、シングルエージェント実行への依存に悩まされ、モジュール間通信が堅牢でないことが多い。
協調的なMARLにおける協調行動を可能にするための協調エージェントとして,大規模言語モデルを訓練するためのフレームワークを提案する。
伝搬ネットワークは、放送意図をチームメイト固有のコミュニケーションメッセージに変換し、指定されたチームメイトと関連する目標を共有する。
論文 参考訳(メタデータ) (2024-07-17T13:14:00Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
本稿では,エージェント間の通信アーキテクチャを学習可能なグラフとして概念化する手法を提案する。
提案手法であるCommFormerは,通信グラフを効率よく最適化し,勾配降下によるアーキテクチャパラメータをエンドツーエンドで並列に洗練する。
論文 参考訳(メタデータ) (2024-05-14T12:40:25Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models [1.0742675209112622]
マルチエージェントシステム(MAS)は、人間との協調と協調を必要とする多くのアプリケーションにとって重要である。
一つの大きな課題は、動的環境における独立したエージェントの同時学習と相互作用である。
我々はMulti-Agent IBLモデル(MAIBL)の3つの変種を提案する。
我々は,MAIBLモデルが学習速度を向上し,動的CMOTPタスクにおいて,現在のMADRLモデルと比較して様々な報酬設定でコーディネートを達成できることを実証した。
論文 参考訳(メタデータ) (2023-08-18T00:39:06Z) - Composite Motion Learning with Task Control [0.6882042556551609]
物理シミュレーション文字に対する合成およびタスク駆動動作制御のための深層学習法を提案する。
我々は,複数の識別器をGANライクな設定で使用することにより,複数の参照動作から,特定の身体部分に対する分離された動作を同時に,直接的に学習する。
本稿では,複合動作模倣と多目的制御の両方を含む多目的課題に対するアプローチの適用性を示す。
論文 参考訳(メタデータ) (2023-05-05T05:02:41Z) - CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action
Spaces [9.578169216444813]
本稿では,異なるエージェント間で共有される学習された潜在行動空間を通じて,マルチロボット操作を協調する手法を提案する。
シミュレーションされたマルチロボット操作タスクにおいて本手法を検証し,サンプル効率と学習性能の観点から,従来のベースラインよりも改善したことを示す。
論文 参考訳(メタデータ) (2022-11-28T23:20:47Z) - Multi-Agent Embodied Visual Semantic Navigation with Scene Prior
Knowledge [42.37872230561632]
視覚的セマンティックナビゲーションでは、ロボットは自我中心の視覚的観察を行い、目標のクラスラベルが与えられる。
既存のモデルのほとんどは単一エージェントナビゲーションにのみ有効であり、より複雑なタスクを完了すると、単一のエージェントは低効率でフォールトトレランスが低い。
本稿では,複数のエージェントが協調して複数の対象物を見つけるマルチエージェント視覚意味ナビゲーションを提案する。
論文 参考訳(メタデータ) (2021-09-20T13:31:03Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - LEMMA: A Multi-view Dataset for Learning Multi-agent Multi-task
Activities [119.88381048477854]
LEMMAデータセットを導入し、細心の注意深い設定で、行方不明な次元に対処するための単一の家を提供する。
我々は、人間と物体の相互作用による原子間相互作用を密に注釈し、日常の活動の構成性、スケジューリング、割り当ての土台として提供する。
この取り組みにより、マシンビジョンコミュニティは、目標指向の人間活動を調べ、現実世界におけるタスクのスケジューリングと割り当てをさらに研究できることを期待します。
論文 参考訳(メタデータ) (2020-07-31T00:13:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。