CooHOI: Learning Cooperative Human-Object Interaction with Manipulated Object Dynamics
- URL: http://arxiv.org/abs/2406.14558v3
- Date: Wed, 30 Oct 2024 02:58:10 GMT
- Title: CooHOI: Learning Cooperative Human-Object Interaction with Manipulated Object Dynamics
- Authors: Jiawei Gao, Ziqin Wang, Zeqi Xiao, Jingbo Wang, Tai Wang, Jinkun Cao, Xiaolin Hu, Si Liu, Jifeng Dai, Jiangmiao Pang,
- Abstract summary: CooHOI is a framework designed to tackle the challenge of multi-humanoid object transportation problem.
A single humanoid character learns to interact with objects through imitation learning from human motion priors.
Then, the humanoid learns to collaborate with others by considering the shared dynamics of the manipulated object.
- Score: 44.30880626337739
- License:
- Abstract: Enabling humanoid robots to clean rooms has long been a pursued dream within humanoid research communities. However, many tasks require multi-humanoid collaboration, such as carrying large and heavy furniture together. Given the scarcity of motion capture data on multi-humanoid collaboration and the efficiency challenges associated with multi-agent learning, these tasks cannot be straightforwardly addressed using training paradigms designed for single-agent scenarios. In this paper, we introduce Cooperative Human-Object Interaction (CooHOI), a framework designed to tackle the challenge of multi-humanoid object transportation problem through a two-phase learning paradigm: individual skill learning and subsequent policy transfer. First, a single humanoid character learns to interact with objects through imitation learning from human motion priors. Then, the humanoid learns to collaborate with others by considering the shared dynamics of the manipulated object using centralized training and decentralized execution (CTDE) multi-agent RL algorithms. When one agent interacts with the object, resulting in specific object dynamics changes, the other agents learn to respond appropriately, thereby achieving implicit communication and coordination between teammates. Unlike previous approaches that relied on tracking-based methods for multi-humanoid HOI, CooHOI is inherently efficient, does not depend on motion capture data of multi-humanoid interactions, and can be seamlessly extended to include more participants and a wide range of object types.
Related papers
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
We propose a visual-geometric collaborative guided affordance learning network that incorporates visual and geometric cues.
Our method outperforms the representative models regarding objective metrics and visual quality.
arXiv Detail & Related papers (2024-10-15T07:35:51Z) - in2IN: Leveraging individual Information to Generate Human INteractions [29.495166514135295]
We introduce in2IN, a novel diffusion model for human-human motion generation conditioned on individual descriptions.
We also propose DualMDM, a model composition technique that combines the motions generated with in2IN and the motions generated by a single-person motion prior pre-trained on HumanML3D.
arXiv Detail & Related papers (2024-04-15T17:59:04Z) - Learning Multimodal Latent Dynamics for Human-Robot Interaction [19.803547418450236]
This article presents a method for learning well-coordinated Human-Robot Interaction (HRI) from Human-Human Interactions (HHI)
We devise a hybrid approach using Hidden Markov Models (HMMs) as the latent space priors for a Variational Autoencoder to model a joint distribution over the interacting agents.
We find that Users perceive our method as more human-like, timely, and accurate and rank our method with a higher degree of preference over other baselines.
arXiv Detail & Related papers (2023-11-27T23:56:59Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
We introduce a novel controllable motion generation method, InterControl, to encourage the synthesized motions maintaining the desired distance between joint pairs.
We demonstrate that the distance between joint pairs for human-wise interactions can be generated using an off-the-shelf Large Language Model.
arXiv Detail & Related papers (2023-11-27T14:32:33Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
We study the problem of full-body human motion synthesis for the manipulation of large-sized objects.
We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework.
We develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated.
arXiv Detail & Related papers (2023-09-28T08:22:00Z) - HODN: Disentangling Human-Object Feature for HOI Detection [51.48164941412871]
We propose a Human and Object Disentangling Network (HODN) to model the Human-Object Interaction (HOI) relationships explicitly.
Considering that human features are more contributive to interaction, we propose a Human-Guide Linking method to make sure the interaction decoder focuses on the human-centric regions.
Our proposed method achieves competitive performance on both the V-COCO and the HICO-Det Linking datasets.
arXiv Detail & Related papers (2023-08-20T04:12:50Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - CLAS: Coordinating Multi-Robot Manipulation with Central Latent Action
Spaces [9.578169216444813]
This paper proposes an approach to coordinating multi-robot manipulation through learned latent action spaces that are shared across different agents.
We validate our method in simulated multi-robot manipulation tasks and demonstrate improvement over previous baselines in terms of sample efficiency and learning performance.
arXiv Detail & Related papers (2022-11-28T23:20:47Z) - MILD: Multimodal Interactive Latent Dynamics for Learning Human-Robot
Interaction [34.978017200500005]
We propose Multimodal Interactive Latent Dynamics (MILD) to address the problem of two-party physical Human-Robot Interactions (HRIs)
We learn the interaction dynamics from demonstrations, using Hidden Semi-Markov Models (HSMMs) to model the joint distribution of the interacting agents in the latent space of a Variational Autoencoder (VAE)
MILD generates more accurate trajectories for the controlled agent (robot) when conditioned on the observed agent's (human) trajectory.
arXiv Detail & Related papers (2022-10-22T11:25:11Z) - LEMMA: A Multi-view Dataset for Learning Multi-agent Multi-task
Activities [119.88381048477854]
We introduce the LEMMA dataset to provide a single home to address missing dimensions with meticulously designed settings.
We densely annotate the atomic-actions with human-object interactions to provide ground-truths of the compositionality, scheduling, and assignment of daily activities.
We hope this effort would drive the machine vision community to examine goal-directed human activities and further study the task scheduling and assignment in the real world.
arXiv Detail & Related papers (2020-07-31T00:13:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.