論文の概要: Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics
- arxiv url: http://arxiv.org/abs/2406.14703v2
- Date: Wed, 23 Oct 2024 14:01:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:58.887388
- Title: Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics
- Title(参考訳): LLMには固有の個性と一貫性があるか? TRAIT:心理指標を用いたLLMのための個性テストセット
- Authors: Seungbeen Lee, Seungwon Lim, Seungju Han, Giyeong Oh, Hyungjoo Chae, Jiwan Chung, Minju Kim, Beong-woo Kwak, Yeonsoo Lee, Dongha Lee, Jinyoung Yeo, Youngjae Yu,
- Abstract要約: 大規模言語モデル(LLM)は会話エージェントとして様々な領域に適応している。
LLMのパーソナリティを評価するために設計された8Kのマルチチョイス質問からなる新しいベンチマークTRAITを紹介する。
LLMは独特で一貫した性格を示し、トレーニングデータの影響を強く受けている。
- 参考スコア(独自算出の注目度): 29.325576963215163
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have led to their adaptation in various domains as conversational agents. We wonder: can personality tests be applied to these agents to analyze their behavior, similar to humans? We introduce TRAIT, a new benchmark consisting of 8K multi-choice questions designed to assess the personality of LLMs. TRAIT is built on two psychometrically validated small human questionnaires, Big Five Inventory (BFI) and Short Dark Triad (SD-3), enhanced with the ATOMIC-10X knowledge graph to a variety of real-world scenarios. TRAIT also outperforms existing personality tests for LLMs in terms of reliability and validity, achieving the highest scores across four key metrics: Content Validity, Internal Validity, Refusal Rate, and Reliability. Using TRAIT, we reveal two notable insights into personalities of LLMs: 1) LLMs exhibit distinct and consistent personality, which is highly influenced by their training data (e.g., data used for alignment tuning), and 2) current prompting techniques have limited effectiveness in eliciting certain traits, such as high psychopathy or low conscientiousness, suggesting the need for further research in this direction.
- Abstract(参考訳): 近年のLarge Language Models (LLM) の進歩は、会話エージェントとして様々な領域に適応している。
これらのエージェントに人格検査を適用すれば、人間のように、彼らの行動を分析することができるのだろうか?
LLMのパーソナリティを評価するために設計された8Kのマルチチョイス質問からなる新しいベンチマークTRAITを紹介する。
TRAITは、BFI(Big Five Inventory)とSD-3(Short Dark Triad)という2つの心理学的に検証された小さな人間のアンケートに基づいて構築されており、ATOMIC-10X知識グラフによって様々な現実のシナリオに拡張されている。
TRAITは、信頼性と妥当性の観点から、LCMの既存のパーソナリティテストよりも優れており、コンテンツ妥当性、内部妥当性、拒絶率、信頼性の4つの主要な指標で最高スコアを達成している。
TRAITを用いて、LLMの個性に関する2つの顕著な洞察を明らかにする。
1)LCMは、トレーニングデータ(例えば、アライメントチューニングに使用されるデータ)の影響を強く受け、独特で一貫した個性を示す。
2) 現状のプロンプト技術は, サイコパシーや良心の低さなど, 特定の特徴を引き出す効果に限界があり, 今後の研究の必要性が示唆されている。
関連論文リスト
- Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
大規模言語モデル (LLM) は、様々な性格特性をシミュレートする能力が増している。
LLMにおけるパーソナリティ特性誘導のためのニューロンに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-16T07:47:45Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - Identifying Multiple Personalities in Large Language Models with
External Evaluation [6.657168333238573]
大きな言語モデル(LLM)は、人間の日常的なアプリケーションと迅速に統合されます。
近年の多くの研究は、人間のために作られた自己評価テストを用いて、LLMの個性を定量化している。
しかし、LCMに適用した場合、これらの自己評価テストの適用性と信頼性に疑問を呈する批評家も多い。
論文 参考訳(メタデータ) (2024-02-22T18:57:20Z) - Illuminating the Black Box: A Psychometric Investigation into the
Multifaceted Nature of Large Language Models [3.692410936160711]
本研究では,AIパーソナリティやAInalityの概念を探求し,Large Language Models(LLM)が人間のパーソナリティに似たパターンを示すことを示唆する。
プロジェクティブテストを用いて,直接質問を通じて容易にはアクセスできないLLM個性の隠れた側面を明らかにする。
機械学習解析の結果,LSMは異なるAinality特性を示し,多様な性格型を示し,外的指示に応答して動的に変化を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-12-21T04:57:21Z) - Challenging the Validity of Personality Tests for Large Language Models [2.9123921488295768]
大規模言語モデル(LLM)は、テキストベースのインタラクションにおいて、ますます人間らしく振る舞う。
人格検査に対するLLMの反応は、人間の反応から体系的に逸脱する。
論文 参考訳(メタデータ) (2023-11-09T11:54:01Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Self-Assessment Tests are Unreliable Measures of LLM Personality [2.887477629420772]
2つの簡単な実験により自己評価人格検査から得られた人格スコアの信頼性を分析した。
これら3つのプロンプトが全く異なるパーソナリティスコアにつながり、これはほとんどのシナリオにおいて、すべての特性に対して統計的に重要な違いである。
自己評価テストの多くは、多重選択質問(MCQ)の形で存在するので、選択肢が提示される順序に対して、スコアも堅牢であるべきだと論じる。
論文 参考訳(メタデータ) (2023-09-15T05:19:39Z) - Do LLMs Possess a Personality? Making the MBTI Test an Amazing
Evaluation for Large Language Models [2.918940961856197]
我々は,大規模言語モデル(LLM)の評価指標として,人格評価ツールであるMBTI(Myers-Briggs Type Indicator)の有効性を検討することを目的とする。
具体的には,1)異なるLDMの性格タイプ,2)素早いエンジニアリングによる人格タイプの変化の可能性,3)モデルの性格にどのような影響があるかを検討する。
論文 参考訳(メタデータ) (2023-07-30T09:34:35Z) - Revisiting the Reliability of Psychological Scales on Large Language Models [62.57981196992073]
本研究の目的は,大規模言語モデルにパーソナリティアセスメントを適用することの信頼性を明らかにすることである。
GPT-3.5、GPT-4、Gemini-Pro、LLaMA-3.1などのモデル毎の2,500設定の分析により、様々なLCMがビッグファイブインベントリに応答して一貫性を示すことが明らかになった。
論文 参考訳(メタデータ) (2023-05-31T15:03:28Z) - Can ChatGPT Assess Human Personalities? A General Evaluation Framework [70.90142717649785]
大きな言語モデル(LLM)は、様々な分野で印象的な成果を上げてきたが、その潜在的な人間のような心理学はいまだに研究されていない。
本稿では,Mers Briggs Type Indicator (MBTI) テストに基づく人格評価のための総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-01T06:16:14Z) - Evaluating and Inducing Personality in Pre-trained Language Models [78.19379997967191]
人間の個性理論を機械行動研究のツールとして活用することで,心理測定研究からインスピレーションを得た。
これらの疑問に答えるために,機械の動作を研究するためのMachine Personality Inventory(MPI)ツールを紹介した。
MPIは、ビッグファイブ・パーソナリティ・ファクター(Big Five Personality Factors、ビッグファイブ・パーソナリティ・ファクター)理論とパーソナリティ評価在庫に基づく標準化されたパーソナリティ・テストに従う。
パーソナリティ・プロンプト法(P2法)を考案し、特定のパーソナリティを持つLSMを制御可能な方法で誘導する。
論文 参考訳(メタデータ) (2022-05-20T07:32:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。