Stirring the false vacuum via interacting quantized bubbles on a 5564-qubit quantum annealer
- URL: http://arxiv.org/abs/2406.14718v1
- Date: Thu, 20 Jun 2024 20:29:03 GMT
- Title: Stirring the false vacuum via interacting quantized bubbles on a 5564-qubit quantum annealer
- Authors: Jaka Vodeb, Jean-Yves Desaules, Andrew Hallam, Andrea Rava, Gregor Humar, Dennis Willsch, Fengping Jin, Madita Willsch, Kristel Michielsen, Zlatko Papić,
- Abstract summary: False vacuum decay is a potential mechanism governing the evolution of the early Universe.
Here we use a quantum annealer with 5564 superconducting flux qubits to directly observe quantized bubble formation in real time.
We develop an effective model that describes the initial bubble creation and subsequent interaction effects.
- Score: 0.31458406135473804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: False vacuum decay is a potential mechanism governing the evolution of the early Universe, with profound connections to non-equilibrium quantum physics, including quenched dynamics, the Kibble-Zurek mechanism, and dynamical metastability. The non-perturbative character of the false vacuum decay and the scarcity of its experimental probes make the effect notoriously difficult to study, with many basic open questions, such as how the bubbles of true vacuum form, move and interact with each other. Here we utilize a quantum annealer with 5564 superconducting flux qubits to directly observe quantized bubble formation in real time -- the hallmark of false vacuum decay dynamics. Moreover, we develop an effective model that describes the initial bubble creation and subsequent interaction effects. We demonstrate that the effective model remains accurate in the presence of dissipation, showing that our annealer can access coherent scaling laws in driven many-body dynamics of 5564 qubits for over $1\mu$s, i.e., more than 1000 intrinsic qubit time units. This work sets the stage for exploring late-time dynamics of the false vacuum at computationally intractable system sizes, dimensionality, and topology in quantum annealer platforms.
Related papers
- Dynamical Vacuum Compressibility of Space [0.0]
This paper continues the investigation initiated in arXiv:2204.08634 into the quantum thermodynamic properties of space.
The quantum processes studied here include particle creation, Casimir effect, and the trace anomaly.
arXiv Detail & Related papers (2023-12-14T15:46:53Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - False vacuum decay in quantum spin chains [0.0]
We study the non-equilibrium dynamics of the false vacuum in a quantum Ising chain and in an XXZ ladder.
We find that the numerical results agree with the theoretical prediction that the decay rate is exponentially small in the inverse of the longitudinal field.
arXiv Detail & Related papers (2021-07-21T16:01:39Z) - Interaction-driven breakdown of dynamical localization in a kicked
quantum gas [0.0]
Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization.
We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice.
Results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting systems.
arXiv Detail & Related papers (2021-06-17T17:52:55Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Collisions of false-vacuum bubble walls in a quantum spin chain [5.191136746295222]
We simulate, using nonperturbative methods, the real-time dynamics of small bubbles of "false vacuum" in a quantum spin chain near criticality.
We consider bubbles whose walls are kink and antikink quasiparticle excitations, so that wall collisions are kink-antikink scattering events.
arXiv Detail & Related papers (2020-12-14T04:01:56Z) - The fate of the false vacuum: Finite temperature, entropy and
topological phase in quantum simulations of the early universe [0.0]
A table-top quantum simulator in the form of an engineered Bose-Einstein condensate (BEC) has been proposed to give dynamical solutions of the quantum field equations.
We give a numerical feasibility study of the BEC quantum simulator under realistic conditions and temperatures, with an approximate truncated Wigner (tW) phase-space method.
We report the observation of false vacuum tunneling in these simulations, and the formation of multiple bubble 'universes' with distinct topological properties.
arXiv Detail & Related papers (2020-10-16T23:30:01Z) - Motion induced by asymmetric excitation of the quantum vacuum [62.997667081978825]
We study the effect of excitation of the quantum vacuum field induced by its coupling with a moving object.
In the present model, this excitation occurs asymmetrically on different sides of the object.
arXiv Detail & Related papers (2020-09-16T02:02:42Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.