Probing false vacuum decay on a cold-atom gauge-theory quantum simulator
- URL: http://arxiv.org/abs/2411.12565v1
- Date: Tue, 19 Nov 2024 15:28:24 GMT
- Title: Probing false vacuum decay on a cold-atom gauge-theory quantum simulator
- Authors: Zi-Hang Zhu, Ying Liu, Gianluca Lagnese, Federica Maria Surace, Wei-Yong Zhang, Ming-Gen He, Jad C. Halimeh, Marcello Dalmonte, Siddhardh C. Morampudi, Frank Wilczek, Zhen-Sheng Yuan, Jian-Wei Pan,
- Abstract summary: We report an experimental investigation, in a cold-atom quantum simulator, of the effect of the background field on pair production from the infinite-mass vacuum.
We find that the energy spectrum of the time-evolved observables in the zero mass limit displays excitation peaks analogous to bosonic modes in the Schwinger model.
- Score: 1.8075943133358323
- License:
- Abstract: In the context of quantum electrodynamics, the decay of false vacuum leads to the production of electron-positron pair, a phenomenon known as the Schwinger effect. In practical experimental scenarios, producing a pair requires an extremely strong electric field, thus suppressing the production rate and making this process very challenging to observe. Here we report an experimental investigation, in a cold-atom quantum simulator, of the effect of the background field on pair production from the infinite-mass vacuum in a $1+1$D $\mathrm{U}(1)$ lattice gauge theory. The ability to tune the background field allows us to study pair production in a large production rate regime. Furthermore, we find that the energy spectrum of the time-evolved observables in the zero mass limit displays excitation peaks analogous to bosonic modes in the Schwinger model. Our work opens the door to quantum-simulation experiments that can controllably tune the production of pairs and manipulate their far-from-equilibrium dynamics.
Related papers
- Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Observation of electric field induced superradiance slowdown in ultracold Rydberg atomic gases [0.4169767831866066]
Atoms excited to electronically high-lying Rydberg states decay to low-energy states through spontaneous emission processes.
We report experimental observations of a significant slowdown in superradiance upon applying an electric field.
Our numerical simulations demonstrate that superradiance decoherence is caused by the Stark shifts of the Rydberg level.
arXiv Detail & Related papers (2024-08-22T10:04:55Z) - Ab-initio Simulations of Coherent Phonon-Induced Pumping of Carriers in
Zirconium Pentatelluride [12.482601299938173]
We show that a coherent $A_text1g$ Raman mode modulation can effectively pump carriers across the band gap.
We reveal the microscopic mechanism of this effect which occurs via Landau-Zener-St"uckelberg tunneling of Bloch electrons in a narrow region in the Brillouin zone center.
arXiv Detail & Related papers (2023-04-17T17:17:59Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Non-equilibrium quantum thermodynamics of a particle trapped in a
controllable time-varying potential [0.0]
We study the dynamics of a levitated nanoparticles undergoing the transition from an harmonic potential to a double-well.
We investigate the dynamics with the Wehrl entropy production and its rates.
The effects and the competitions of the unitary and the dissipative parts onto the system are demonstrated.
arXiv Detail & Related papers (2021-10-29T16:25:25Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - The fate of the false vacuum: Finite temperature, entropy and
topological phase in quantum simulations of the early universe [0.0]
A table-top quantum simulator in the form of an engineered Bose-Einstein condensate (BEC) has been proposed to give dynamical solutions of the quantum field equations.
We give a numerical feasibility study of the BEC quantum simulator under realistic conditions and temperatures, with an approximate truncated Wigner (tW) phase-space method.
We report the observation of false vacuum tunneling in these simulations, and the formation of multiple bubble 'universes' with distinct topological properties.
arXiv Detail & Related papers (2020-10-16T23:30:01Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.