論文の概要: A General Control-Theoretic Approach for Reinforcement Learning: Theory and Algorithms
- arxiv url: http://arxiv.org/abs/2406.14753v1
- Date: Thu, 20 Jun 2024 21:50:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 15:22:05.841820
- Title: A General Control-Theoretic Approach for Reinforcement Learning: Theory and Algorithms
- Title(参考訳): 強化学習のための一般制御-理論的アプローチ:理論とアルゴリズム
- Authors: Weiqin Chen, Mark S. Squillante, Chai Wah Wu, Santiago Paternain,
- Abstract要約: 最適政策の直接学習を支援するための制御理論強化学習手法を考案する。
我々は,このアプローチの理論的特性を確立し,このアプローチの特定の例に基づいてアルゴリズムを導出する。
- 参考スコア(独自算出の注目度): 7.081523472610874
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We devise a control-theoretic reinforcement learning approach to support direct learning of the optimal policy. We establish theoretical properties of our approach and derive an algorithm based on a specific instance of this approach. Our empirical results demonstrate the significant benefits of our approach.
- Abstract(参考訳): 最適政策の直接学習を支援するための制御理論強化学習手法を考案する。
我々は,このアプローチの理論的特性を確立し,このアプローチの特定の例に基づいてアルゴリズムを導出する。
私たちの経験的結果は、我々のアプローチの大きな利点を示しています。
関連論文リスト
- A Pontryagin Perspective on Reinforcement Learning [11.56175346731332]
固定アクションシーケンスを代わりに学習するオープンループ強化学習のパラダイムを導入する。
1つの頑健なモデルベース法と2つのサンプル効率なモデルフリー法という3つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-28T12:05:20Z) - Learning-to-Optimize with PAC-Bayesian Guarantees: Theoretical Considerations and Practical Implementation [4.239829789304117]
最適学習の設定にはPAC-ベイズ理論を用いる。
証明可能な一般化保証付き最適化アルゴリズムを学習する最初のフレームワークを提示する。
学習アルゴリズムは、(決定論的)最悪のケース分析から得られた関連アルゴリズムを確実に上回ります。
論文 参考訳(メタデータ) (2024-04-04T08:24:57Z) - Distributional Bellman Operators over Mean Embeddings [37.5480897544168]
本研究では,帰還分布の有限次元平均埋め込みを学習し,分布強化学習のための新しい枠組みを提案する。
動的プログラミングと時間差学習のための新しいアルゴリズムをこのフレームワークに基づいて提案する。
論文 参考訳(メタデータ) (2023-12-09T11:36:14Z) - Provable Representation with Efficient Planning for Partial Observable Reinforcement Learning [74.67655210734338]
ほとんどの実世界の強化学習アプリケーションでは、状態情報は部分的にしか観測できないため、マルコフ決定プロセスの仮定を破る。
我々は、部分的な観察から実践的な強化学習のためのコヒーレントな枠組みと抽出可能なアルゴリズムアプローチへと導く表現に基づく視点を開発する。
提案アルゴリズムは,様々なベンチマークで部分的な観察を行い,最先端の性能を超えることができることを実証的に実証した。
論文 参考訳(メタデータ) (2023-11-20T23:56:58Z) - PACER: A Fully Push-forward-based Distributional Reinforcement Learning
Algorithm [13.18145235926629]
我々は,Push-forward-based Actor-Critic EncourageR (PACER)と呼ばれる,Push-forward-based DistributionReinforcement Learningアルゴリズムを提案する。
PACERは最大効用値ポリシー勾配を確立し、アクターと批評家の両方の構築においてプッシュフォワード演算子を同時に活用する。
各種連続制御ベンチマークの実験的評価は、最先端のアルゴリズムよりもアルゴリズムの方が優れていることを示す。
論文 参考訳(メタデータ) (2023-06-11T09:45:31Z) - Representation-Driven Reinforcement Learning [57.44609759155611]
強化学習のための表現駆動型フレームワークを提案する。
期待値の見積もりとしてポリシーを表現することにより、我々は、探索と搾取を導くために、文脈的盗賊の手法を活用する。
このフレームワークの有効性を,進化的および政策的勾配に基づくアプローチに適用することによって実証する。
論文 参考訳(メタデータ) (2023-05-31T14:59:12Z) - Provable Reward-Agnostic Preference-Based Reinforcement Learning [61.39541986848391]
PbRL(Preference-based Reinforcement Learning)は、RLエージェントが、軌道上のペアワイドな嗜好に基づくフィードバックを用いてタスクを最適化することを学ぶパラダイムである。
本稿では,隠れた報酬関数の正確な学習を可能にする探索軌道を求める理論的報酬非依存PbRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-29T15:00:09Z) - Towards Theoretical Understanding of Data-Driven Policy Refinement [0.0]
本稿では、特に安全クリティカルなアプリケーションのために設計された強化学習におけるデータ駆動型ポリシー改善のアプローチを提案する。
我々の主な貢献は、このデータ駆動政策改善の概念の数学的定式化にある。
我々は、収束性、ロバスト性境界、一般化誤差、モデルミスマッチに対するレジリエンスなど、我々のアプローチの重要な理論的性質を解明する一連の定理を提示する。
論文 参考訳(メタデータ) (2023-05-11T13:36:21Z) - Off-Policy Imitation Learning from Observations [78.30794935265425]
観察からの学習(lfo)は、多くのアプリケーションが利用できる実用的な強化学習シナリオである。
オフポリシ最適化を原則的に実現するサンプル効率の高いLfOアプローチを提案する。
我々のアプローチは、サンプル効率と性能の両面で最先端のロコモーションに匹敵する。
論文 参考訳(メタデータ) (2021-02-25T21:33:47Z) - Adaptive Estimator Selection for Off-Policy Evaluation [48.66170976187225]
オフポリシー評価設定における推定器選択のための汎用的データ駆動手法を開発した。
また,本手法の性能保証を確立し,オラクル推定器と競合することを示す。
論文 参考訳(メタデータ) (2020-02-18T16:57:42Z) - Reward-Conditioned Policies [100.64167842905069]
模倣学習には、ほぼ最適の専門家データが必要である。
実演なしで指導的学習を通じて効果的な政策を学べるか?
政策探索の原則的手法として,このようなアプローチを導出する方法を示す。
論文 参考訳(メタデータ) (2019-12-31T18:07:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。