Consistent community detection in multi-layer networks with heterogeneous differential privacy
- URL: http://arxiv.org/abs/2406.14772v1
- Date: Thu, 20 Jun 2024 22:49:55 GMT
- Title: Consistent community detection in multi-layer networks with heterogeneous differential privacy
- Authors: Yaoming Zhen, Shirong Xu, Junhui Wang,
- Abstract summary: We propose a personalized edge flipping mechanism that allows data publishers to protect edge information based on each node's privacy preference.
It can achieve differential privacy while preserving the community structure under the multi-layer degree-corrected block model.
We show that better privacy protection of edges can be obtained for a proportion of nodes while allowing other nodes to give up their privacy.
- Score: 4.451479907610764
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As network data has become increasingly prevalent, a substantial amount of attention has been paid to the privacy issue in publishing network data. One of the critical challenges for data publishers is to preserve the topological structures of the original network while protecting sensitive information. In this paper, we propose a personalized edge flipping mechanism that allows data publishers to protect edge information based on each node's privacy preference. It can achieve differential privacy while preserving the community structure under the multi-layer degree-corrected stochastic block model after appropriately debiasing, and thus consistent community detection in the privatized multi-layer networks is achievable. Theoretically, we establish the consistency of community detection in the privatized multi-layer network and show that better privacy protection of edges can be obtained for a proportion of nodes while allowing other nodes to give up their privacy. Furthermore, the advantage of the proposed personalized edge-flipping mechanism is also supported by its numerical performance on various synthetic networks and a real-life multi-layer network.
Related papers
- Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
This paper characterizes the impact of Differential Privacy on bias and unfairness in the context of releasing information about networks.
We consider a network release problem where the network structure is known to all, but the weights on edges must be released privately.
Our work provides theoretical foundations and empirical evidence into the bias and unfairness arising due to privacy in these networked decision problems.
arXiv Detail & Related papers (2024-08-08T08:37:37Z) - Unveiling Privacy Vulnerabilities: Investigating the Role of Structure in Graph Data [17.11821761700748]
This study advances the understanding and protection against privacy risks emanating from network structure.
We develop a novel graph private attribute inference attack, which acts as a pivotal tool for evaluating the potential for privacy leakage through network structures.
Our attack model poses a significant threat to user privacy, and our graph data publishing method successfully achieves the optimal privacy-utility trade-off.
arXiv Detail & Related papers (2024-07-26T07:40:54Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
arXiv Detail & Related papers (2022-11-18T11:39:03Z) - Cross-Network Social User Embedding with Hybrid Differential Privacy
Guarantees [81.6471440778355]
We propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way.
In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types.
To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users.
arXiv Detail & Related papers (2022-09-04T06:22:37Z) - Large-Scale Privacy-Preserving Network Embedding against Private Link
Inference Attacks [12.434976161956401]
We address a novel problem of privacy-preserving network embedding against private link inference attacks.
We propose to perturb the original network by adding or removing links, and expect the embedding generated on the perturbed network can leak little information about private links but hold high utility for various downstream tasks.
arXiv Detail & Related papers (2022-05-28T13:59:39Z) - Robustness Threats of Differential Privacy [70.818129585404]
We experimentally demonstrate that networks, trained with differential privacy, in some settings might be even more vulnerable in comparison to non-private versions.
We study how the main ingredients of differentially private neural networks training, such as gradient clipping and noise addition, affect the robustness of the model.
arXiv Detail & Related papers (2020-12-14T18:59:24Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.