Bayesian neural networks for predicting uncertainty in full-field material response
- URL: http://arxiv.org/abs/2406.14838v1
- Date: Fri, 21 Jun 2024 02:43:25 GMT
- Title: Bayesian neural networks for predicting uncertainty in full-field material response
- Authors: George D. Pasparakis, Lori Graham-Brady, Michael D. Shields,
- Abstract summary: This work proposes an ML surrogate framework for stress field prediction and uncertainty quantification.
A modified Bayesian U-net architecture is employed to provide a data-driven image-to-image mapping from initial microstructure to stress field.
It is shown that the proposed methods yield predictions of high accuracy compared to the FEA solution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stress and material deformation field predictions are among the most important tasks in computational mechanics. These predictions are typically made by solving the governing equations of continuum mechanics using finite element analysis, which can become computationally prohibitive considering complex microstructures and material behaviors. Machine learning (ML) methods offer potentially cost effective surrogates for these applications. However, existing ML surrogates are either limited to low-dimensional problems and/or do not provide uncertainty estimates in the predictions. This work proposes an ML surrogate framework for stress field prediction and uncertainty quantification for diverse materials microstructures. A modified Bayesian U-net architecture is employed to provide a data-driven image-to-image mapping from initial microstructure to stress field with prediction (epistemic) uncertainty estimates. The Bayesian posterior distributions for the U-net parameters are estimated using three state-of-the-art inference algorithms: the posterior sampling-based Hamiltonian Monte Carlo method and two variational approaches, the Monte-Carlo Dropout method and the Bayes by Backprop algorithm. A systematic comparison of the predictive accuracy and uncertainty estimates for these methods is performed for a fiber reinforced composite material and polycrystalline microstructure application. It is shown that the proposed methods yield predictions of high accuracy compared to the FEA solution, while uncertainty estimates depend on the inference approach. Generally, the Hamiltonian Monte Carlo and Bayes by Backprop methods provide consistent uncertainty estimates. Uncertainty estimates from Monte Carlo Dropout, on the other hand, are more difficult to interpret and depend strongly on the method's design.
Related papers
- Clustering and Uncertainty Analysis to Improve the Machine
Learning-based Predictions of SAFARI-1 Control Follower Assembly Axial
Neutron Flux Profiles [2.517043342442487]
The goal of this work is to develop accurate Machine Learning (ML) models for predicting the assembly axial neutron flux profiles in the SAFARI-1 research reactor.
The data-driven nature of ML models makes them susceptible to uncertainties which are introduced by sources such as noise in training data.
The aim of this work is to improve the ML models for the control assemblies by a combination of supervised and unsupervised ML algorithms.
arXiv Detail & Related papers (2023-12-20T20:22:13Z) - Conformalized Multimodal Uncertainty Regression and Reasoning [0.9205582989348333]
This paper introduces a lightweight uncertainty estimator capable of predicting multimodal (disjoint) uncertainty bounds.
We specifically discuss its application for visual odometry (VO), where environmental features such as flying domain symmetries can result in multimodal uncertainties.
arXiv Detail & Related papers (2023-09-20T02:40:59Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Bayesian Sparse Regression for Mixed Multi-Responses with Application to
Runtime Metrics Prediction in Fog Manufacturing [6.288767115532775]
Fog manufacturing can greatly enhance traditional manufacturing systems through distributed computation Fog units.
It is known that the predictive offloading methods highly depend on accurate prediction and uncertainty quantification of runtime performance metrics.
We propose a Bayesian sparse regression for multivariate mixed responses to enhance the prediction of runtime performance metrics.
arXiv Detail & Related papers (2022-10-10T16:14:08Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Calibrated Uncertainty for Molecular Property Prediction using Ensembles
of Message Passing Neural Networks [11.47132155400871]
We extend a message passing neural network designed specifically for predicting properties of molecules and materials.
We show that our approach results in accurate models for predicting molecular formation energies with calibrated uncertainty.
arXiv Detail & Related papers (2021-07-13T13:28:11Z) - Calibration and Uncertainty Quantification of Bayesian Convolutional
Neural Networks for Geophysical Applications [0.0]
It is common to incorporate the uncertainty of predictions such subsurface models should provide calibrated probabilities and the associated uncertainties in their predictions.
It has been shown that popular Deep Learning-based models are often miscalibrated, and due to their deterministic nature, provide no means to interpret the uncertainty of their predictions.
We compare three different approaches obtaining probabilistic models based on convolutional neural networks in a Bayesian formalism.
arXiv Detail & Related papers (2021-05-25T17:54:23Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
We demonstrate that predictive uncertainty estimated by the current methods does not highly correlate with prediction error.
We propose a novel method that estimates the target labels and magnitude of the prediction error in two steps.
arXiv Detail & Related papers (2020-02-13T15:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.