論文の概要: Automated architectural space layout planning using a physics-inspired generative design framework
- arxiv url: http://arxiv.org/abs/2406.14840v1
- Date: Fri, 21 Jun 2024 02:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 14:52:36.144452
- Title: Automated architectural space layout planning using a physics-inspired generative design framework
- Title(参考訳): 物理に着想を得た生成設計フレームワークを用いた建築空間レイアウトの自動設計
- Authors: Zhipeng Li, Sichao Li, Geoff Hinchcliffe, Noam Maitless, Nick Birbilis,
- Abstract要約: 空間配置の決定は、建築プロジェクトの設計段階における主要な活動の1つである。
提案手法は、空間レイアウト計画と進化的最適化メタヒューリスティックのための、物理学から着想を得た新しいパラメトリックモデルを統合する。
その結果、このような生成設計フレームワークは、設計段階において幅広い設計提案を生成できることが明らかとなった。
- 参考スコア(独自算出の注目度): 4.202451453254076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The determination of space layout is one of the primary activities in the schematic design stage of an architectural project. The initial layout planning defines the shape, dimension, and circulation pattern of internal spaces; which can also affect performance and cost of the construction. When carried out manually, space layout planning can be complicated, repetitive and time consuming. In this work, a generative design framework for the automatic generation of spatial architectural layout has been developed. The proposed approach integrates a novel physics-inspired parametric model for space layout planning and an evolutionary optimisation metaheuristic. Results revealed that such a generative design framework can generate a wide variety of design suggestions at the schematic design stage, applicable to complex design problems.
- Abstract(参考訳): 空間配置の決定は、建築プロジェクトの設計段階における主要な活動の1つである。
最初のレイアウト計画では、内部空間の形状、寸法、循環パターンを定義しており、構造の性能やコストにも影響を及ぼす。
手動で行うと、スペースレイアウトの計画が複雑になり、反復的になり、時間がかかります。
本研究では,空間配置の自動生成のための生成設計フレームワークを開発した。
提案手法は、空間レイアウト計画と進化的最適化メタヒューリスティックのための、物理学から着想を得た新しいパラメトリックモデルを統合する。
その結果、このような生成設計フレームワークは、複雑な設計問題に適用可能な設計段階において、多種多様な設計提案を生成できることが判明した。
関連論文リスト
- Layout2Rendering: AI-aided Greenspace design [6.177449739362043]
本研究では,ディープラーニング技術に基づく公園空間生成設計システムを提案する。
このシステムはランドスケープ要素のトポロジ的関係に基づいて設計計画を生成し、プラン要素情報をベクトル化し、グラスホッパーを用いて3次元モデルを生成する。
論文 参考訳(メタデータ) (2024-04-21T14:00:43Z) - Generating Daylight-driven Architectural Design via Diffusion Models [2.3020018305241337]
日光駆動型AI支援アーキテクチャ設計手法を提案する。
まず、ランダムパラメータを用いたマッサージモデルを生成し、アーキテクチャマッサージモデルを生成する手法を定式化する。
我々は、日光駆動のファサード設計戦略を統合し、窓レイアウトを正確に決定し、マッサージモデルに適用する。
論文 参考訳(メタデータ) (2024-04-20T11:28:14Z) - I-Design: Personalized LLM Interior Designer [57.00412237555167]
I-Designはパーソナライズされたインテリアデザイナで、自然言語によるコミュニケーションを通じて設計目標の生成と視覚化を可能にする。
I-Designは、対話や論理的推論に従事する大きな言語モデルエージェントのチームから始まる。
最終的な設計は、既存のオブジェクトデータベースから資産を取り出し、統合することで、3Dで構築されます。
論文 参考訳(メタデータ) (2024-04-03T16:17:53Z) - Zero-shot Sequential Neuro-symbolic Reasoning for Automatically
Generating Architecture Schematic Designs [4.78070970632469]
本稿では,アーキテクチャ設計を自動生成するシステムを提案する。
我々は、生成AI(神経推論)と数学的プログラムソルバ(記号推論)の強みを利用する。
提案手法は, 周辺地域の理解に応じて, 様々な建築設計を作成できる。
論文 参考訳(メタデータ) (2024-01-25T12:52:42Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Compositional Foundation Models for Hierarchical Planning [52.18904315515153]
本稿では,言語,視覚,行動データを個別に訓練し,長期的課題を解決するための基礎モデルを提案する。
我々は,大規模なビデオ拡散モデルを用いて,環境に根ざした記号的計画を構築するために,大規模言語モデルを用いている。
生成したビデオプランは、生成したビデオからアクションを推論する逆ダイナミクスモデルを通じて、視覚運動制御に基礎を置いている。
論文 参考訳(メタデータ) (2023-09-15T17:44:05Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z) - AIRCHITECT: Learning Custom Architecture Design and Mapping Space [2.498907460918493]
我々は機械学習モデルをトレーニングし、カスタムアーキテクチャの設計とマッピング空間の最適パラメータを予測する。
最適設計およびマッピングパラメータの予測を「一般化」するために,設計空間を捕捉し,モデルを訓練することは可能であることを示す。
私たちはAIRCHITECTと呼ばれるカスタムネットワークアーキテクチャをトレーニングし、94.3%のテスト精度でアーキテクチャ設計空間を学習することができる。
論文 参考訳(メタデータ) (2021-08-16T05:05:52Z) - Structural Design Recommendations in the Early Design Phase using
Machine Learning [6.071146161035648]
ApproxiFramerは機械学習ベースのシステムで、リアルタイムで構築計画のスケッチから構造的レイアウトを自動的に生成する。
我々は、スケッチレベルの建築計画のための構造設計ソリューションを反復的に生成するように、畳み込みニューラルネットワークを訓練した。
論文 参考訳(メタデータ) (2021-07-19T01:02:14Z) - CoSE: Compositional Stroke Embeddings [52.529172734044664]
本稿では、ストロークベースの描画タスクのような複雑な自由形式構造に対する生成モデルを提案する。
我々のアプローチは、自動補完図のようなインタラクティブなユースケースに適している。
論文 参考訳(メタデータ) (2020-06-17T15:22:54Z) - Latent Space Roadmap for Visual Action Planning of Deformable and Rigid
Object Manipulation [74.88956115580388]
プランニングは、イメージを埋め込んだ低次元の潜在状態空間で行われる。
我々のフレームワークは2つの主要なコンポーネントで構成されており、画像のシーケンスとして視覚的な計画を生成するビジュアル・フォレスト・モジュール(VFM)と、それら間のアクションを予測するアクション・プロポーザル・ネットワーク(APN)である。
論文 参考訳(メタデータ) (2020-03-19T18:43:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。