論文の概要: Generating Daylight-driven Architectural Design via Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.13353v1
- Date: Sat, 20 Apr 2024 11:28:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 19:19:56.972560
- Title: Generating Daylight-driven Architectural Design via Diffusion Models
- Title(参考訳): 拡散モデルによる日光駆動型建築設計の生成
- Authors: Pengzhi Li, Baijuan Li,
- Abstract要約: 日光駆動型AI支援アーキテクチャ設計手法を提案する。
まず、ランダムパラメータを用いたマッサージモデルを生成し、アーキテクチャマッサージモデルを生成する手法を定式化する。
我々は、日光駆動のファサード設計戦略を統合し、窓レイアウトを正確に決定し、マッサージモデルに適用する。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the rapid development of large-scale models has made new possibilities for interdisciplinary fields such as architecture. In this paper, we present a novel daylight-driven AI-aided architectural design method. Firstly, we formulate a method for generating massing models, producing architectural massing models using random parameters quickly. Subsequently, we integrate a daylight-driven facade design strategy, accurately determining window layouts and applying them to the massing models. Finally, we seamlessly combine a large-scale language model with a text-to-image model, enhancing the efficiency of generating visual architectural design renderings. Experimental results demonstrate that our approach supports architects' creative inspirations and pioneers novel avenues for architectural design development. Project page: https://zrealli.github.io/DDADesign/.
- Abstract(参考訳): 近年,大規模モデルの急速な発展は,建築などの学際分野に新たな可能性をもたらしている。
本稿では,新しい日光駆動型AI支援アーキテクチャ設計手法を提案する。
まず, ランダムパラメータを用いたマッサージモデル生成手法を定式化し, 素早いマッサージモデルを生成する。
その後、日光駆動型ファサード設計戦略を統合し、窓レイアウトを正確に決定し、マッサージモデルに適用する。
最後に,大規模言語モデルとテキスト・ツー・イメージ・モデルとをシームレスに組み合わせ,ビジュアル・アーキテクチャ・デザイン・レンダリングの効率を向上する。
実験の結果,提案手法は建築家の創造的なインスピレーションと,建築設計開発のための新しい道の先駆者を支援することが示された。
プロジェクトページ: https://zrealli.github.io/DDADesign/。
関連論文リスト
- PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
本研究では,グラフィックレイアウトの自動生成のための統合フレームワークを提案する。
データ駆動方式では、レイアウトを生成するために構造化テキスト(JSONフォーマット)とビジュアルインストラクションチューニングを用いる。
我々は、大規模な実験を行い、パブリックなマルチモーダルレイアウト生成ベンチマーク上で、最先端(SOTA)性能を達成した。
論文 参考訳(メタデータ) (2024-06-05T03:05:52Z) - Object-Oriented Architecture: A Software Engineering-Inspired Shape Grammar for Durands Plates [0.4532517021515834]
焦点は、フランスの新古典主義建築家ジャン=ニコラ=ルイ・デュランの様式による板のモジュラー化である。
提案手法は、デュランの原版に固有の論理を固執しつつ、多様なデザインを創出することができる。
論文 参考訳(メタデータ) (2024-04-20T11:51:05Z) - Generative AI for Architectural Design: A Literature Review [14.910709576423576]
ジェネレーティブ・人工知能は、建築設計における新しい方法論パラダイムを開拓した。
本稿では,建築設計におけるジェネレーティブAI技術の広範な応用について考察する。
論文 参考訳(メタデータ) (2024-03-30T13:25:11Z) - Sketch-to-Architecture: Generative AI-aided Architectural Design [20.42779592734634]
簡単なスケッチから概念的なフロアプランと3Dモデルを生成するために,AIモデルを利用する新しいワークフローを提案する。
我々の研究は、アーキテクチャ設計プロセスにおける生成AIの可能性を示し、コンピュータ支援アーキテクチャ設計の新しい方向性を指し示している。
論文 参考訳(メタデータ) (2024-03-29T14:04:45Z) - Compositional Generative Inverse Design [69.22782875567547]
入力変数を設計して目的関数を最適化する逆設計は重要な問題である。
拡散モデルにより得られた学習エネルギー関数を最適化することにより、そのような逆例を避けることができることを示す。
N-body 相互作用タスクと2次元多面体設計タスクにおいて,実験時に学習した拡散モデルを構成することにより,初期状態と境界形状を設計できることを示す。
論文 参考訳(メタデータ) (2024-01-24T01:33:39Z) - Experiments on Generative AI-Powered Parametric Modeling and BIM for
Architectural Design [4.710049212041078]
この研究は、3Dアーキテクチャ設計におけるChatGPTと生成AIの可能性について実験した。
このフレームワークはアーキテクトに設計意図を伝えるための直感的で強力な方法を提供する。
論文 参考訳(メタデータ) (2023-08-01T01:51:59Z) - LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer [81.5482196644596]
グラフィックレイアウトデザインは視覚コミュニケーションにおいて重要な役割を担っている。
しかし、手作りのレイアウトデザインは、スキルを要求し、時間がかかり、バッチプロダクションではスケールできない。
ジェネレーティブモデルは、設計自動化をスケーラブルにするために出現するが、デザイナの欲求に沿うデザインを作成することは、未だに容易ではない。
論文 参考訳(メタデータ) (2022-12-19T21:57:35Z) - AI Art in Architecture [0.6853165736531939]
最近の拡散ベースのAIアートプラットフォームは、単純なテキスト記述から印象的なイメージを作成することができる。
これはアーキテクチャ設計の初期段階にも当てはまり、アイデア、スケッチ、モデリングの段階が複数ある。
アーキテクチャ設計における一連の一般的なユースケースに対して,Midjourney,DALL-E 2,StableDiffusionの各プラットフォームの適用性について検討する。
論文 参考訳(メタデータ) (2022-12-19T12:24:14Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGANはInvertible GANの略で、高品質な生成モデルの潜在空間に実際の画像を埋め込むことに成功した。
これにより、画像のインペイント、マージ、オンラインデータ拡張を実行できます。
論文 参考訳(メタデータ) (2021-12-08T21:39:00Z) - Dynamically Grown Generative Adversarial Networks [111.43128389995341]
本稿では、ネットワークアーキテクチャとそのパラメータを自動化とともに最適化し、トレーニング中にGANを動的に成長させる手法を提案する。
本手法はアーキテクチャ探索手法を勾配に基づく訓練とインターリーブステップとして組み込んで,ジェネレータと識別器の最適アーキテクチャ成長戦略を定期的に探究する。
論文 参考訳(メタデータ) (2021-06-16T01:25:51Z) - Retinex-inspired Unrolling with Cooperative Prior Architecture Search
for Low-light Image Enhancement [58.72667941107544]
低照度画像のための軽量で効果的な拡張ネットワークを構築するために,Retinex-inspired Unrolling with Architecture Search (RUAS)を提案する。
RUASは、高速かつ少ない計算リソースで、最高性能の画像強化ネットワークを得ることができます。
論文 参考訳(メタデータ) (2020-12-10T11:51:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。