論文の概要: From LLMs to MLLMs: Exploring the Landscape of Multimodal Jailbreaking
- arxiv url: http://arxiv.org/abs/2406.14859v1
- Date: Fri, 21 Jun 2024 04:33:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 14:52:36.115544
- Title: From LLMs to MLLMs: Exploring the Landscape of Multimodal Jailbreaking
- Title(参考訳): LLMからMLLMへ:マルチモーダル・ジェイルブレイクの景観を探る
- Authors: Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei,
- Abstract要約: Large Language Models (LLM) と Multimodal Large Language Models (MLLM) は、様々な攻撃に対して脆弱性を暴露している。
本稿では, LLM と MLLM を対象とするジェイルブレーキング研究の概要を概説し, 評価ベンチマーク, 攻撃技術, 防衛戦略の最近の進歩に注目した。
- 参考スコア(独自算出の注目度): 32.300594239333236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) has exposed vulnerabilities to various adversarial attacks. This paper provides a comprehensive overview of jailbreaking research targeting both LLMs and MLLMs, highlighting recent advancements in evaluation benchmarks, attack techniques and defense strategies. Compared to the more advanced state of unimodal jailbreaking, multimodal domain remains underexplored. We summarize the limitations and potential research directions of multimodal jailbreaking, aiming to inspire future research and further enhance the robustness and security of MLLMs.
- Abstract(参考訳): LLM(Large Language Models)とMLLM(Multimodal Large Language Models)の急速な開発により、様々な敵の攻撃に対する脆弱性が明らかになった。
本稿では, LLM と MLLM を対象とするジェイルブレーキング研究の概要を概説し, 評価ベンチマーク, 攻撃技術, 防衛戦略の最近の進歩に注目した。
より先進的な一過性のジェイルブレイクと比較すると、マルチモーダルドメインは未探索のままである。
我々は,マルチモーダルジェイルブレイクの限界と潜在的研究方向性を要約し,今後の研究を刺激し,MLLMの堅牢性と安全性をさらに高めることを目的としている。
関連論文リスト
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
本稿では,l-MLLMからs-MLLMへ知識を伝達する新しいフレームワークを提案する。
具体的には,l-MLLMとs-MLLMの視覚的テキスト出力分布のばらつきを最小限に抑えるために,MDist(Multimodal Distillation)を導入する。
また,S-MLLMの可能性を完全に活用するための3段階学習手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T17:41:28Z) - $\textit{MMJ-Bench}$: A Comprehensive Study on Jailbreak Attacks and Defenses for Multimodal Large Language Models [11.02754617539271]
我々は,MLLMのジェイルブレイク攻撃と防御技術を評価するための統合パイプラインであるtextitMMJ-Benchを紹介する。
我々は,SoTA MLLMに対する様々な攻撃方法の有効性を評価し,防御機構が防御効果とモデルの有用性に与える影響を評価する。
論文 参考訳(メタデータ) (2024-08-16T00:18:23Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
MLLM(Multimodal Large Language Models)は、単一のモダリティシステムの能力を超えた現実世界のアプリケーションの複雑さに対処する。
本稿では,自然言語,視覚,音声などのマルチモーダルタスクにおけるMLLMの応用を体系的に整理する。
論文 参考訳(メタデータ) (2024-08-02T15:14:53Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - Benchmarking Trustworthiness of Multimodal Large Language Models: A Comprehensive Study [51.19622266249408]
MultiTrustはMLLMの信頼性に関する最初の総合的で統一されたベンチマークである。
我々のベンチマークでは、マルチモーダルリスクとクロスモーダルインパクトの両方に対処する厳格な評価戦略を採用している。
21の近代MLLMによる大規模な実験は、これまで調査されなかった信頼性の問題とリスクを明らかにしている。
論文 参考訳(メタデータ) (2024-06-11T08:38:13Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
MLLM(Multimodal Large Language Models)は、視覚的質問応答、視覚的理解、推論などのタスクにおいて顕著な性能を示す。
モデルサイズと高いトレーニングと推論コストが、MLLMのアカデミックや産業への応用を妨げている。
本調査は,効率的なMLLMの現状を包括的かつ体系的に概観するものである。
論文 参考訳(メタデータ) (2024-05-17T12:37:10Z) - Unbridled Icarus: A Survey of the Potential Perils of Image Inputs in Multimodal Large Language Model Security [5.077261736366414]
強力なMLLMのような信頼性の高いAIシステムの追求は、現代研究の重要な領域として現れている。
本稿では,画像モダリティのMLLMへの導入に伴う多面的リスクの軽減に努める。
論文 参考訳(メタデータ) (2024-04-08T07:54:18Z) - JailBreakV: A Benchmark for Assessing the Robustness of MultiModal Large Language Models against Jailbreak Attacks [24.69275959735538]
本稿では,大規模言語モデルのジェイルブレイクを成功させる手法が,MLLMのジェイルブレークに等しく有効かどうかを検討する。
MLLM への LLM ジェイルブレイク手法の転送性を評価するための先駆的なベンチマークである JailBreakV-28K を紹介する。
LLMの高度なジェイルブレイク攻撃と、最近のMLLMのジェイルブレイク攻撃によるイメージベースのジェイルブレイク入力により、20000のテキストベースのジェイルブレイクプロンプトを生成します。
論文 参考訳(メタデータ) (2024-04-03T19:23:18Z) - Exploring the Reasoning Abilities of Multimodal Large Language Models
(MLLMs): A Comprehensive Survey on Emerging Trends in Multimodal Reasoning [44.12214030785711]
マルチモーダル大言語モデル(MLLM)のフロンティアを分類・記述し、既存のマルチモーダル推論の評価プロトコルについて概観する。
本稿では,MLLMの推論集約型タスクへの適用動向を紹介するとともに,現在の実践と今後の方向性について論じる。
論文 参考訳(メタデータ) (2024-01-10T15:29:21Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。