論文の概要: Safely Learning with Private Data: A Federated Learning Framework for Large Language Model
- arxiv url: http://arxiv.org/abs/2406.14898v4
- Date: Sun, 22 Dec 2024 08:16:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:52:27.630889
- Title: Safely Learning with Private Data: A Federated Learning Framework for Large Language Model
- Title(参考訳): プライベートデータによる安全な学習 - 大規模言語モデルのためのフェデレーション学習フレームワーク
- Authors: JiaYing Zheng, HaiNan Zhang, LingXiang Wang, WangJie Qiu, HongWei Zheng, ZhiMing Zheng,
- Abstract要約: フェデレートラーニング(FL)は、分散プライベートデータを用いたモデルのトレーニングに理想的なソリューションである。
FedAvgのような従来のフレームワークは、大きな言語モデル(LLM)には適さない
本稿では,サーバサイド攻撃とピアクライアント攻撃の両方によるデータ漏洩を防止するFL-GLMを提案する。
- 参考スコア(独自算出の注目度): 3.1077263218029105
- License:
- Abstract: Private data, being larger and quality-higher than public data, can greatly improve large language models (LLM). However, due to privacy concerns, this data is often dispersed in multiple silos, making its secure utilization for LLM training a challenge. Federated learning (FL) is an ideal solution for training models with distributed private data, but traditional frameworks like FedAvg are unsuitable for LLM due to their high computational demands on clients. An alternative, split learning, offloads most training parameters to the server while training embedding and output layers locally, making it more suitable for LLM. Nonetheless, it faces significant challenges in security and efficiency. Firstly, the gradients of embeddings are prone to attacks, leading to potential reverse engineering of private data. Furthermore, the server's limitation of handle only one client's training request at a time hinders parallel training, severely impacting training efficiency. In this paper, we propose a Federated Learning framework for LLM, named FL-GLM, which prevents data leakage caused by both server-side and peer-client attacks while improving training efficiency. Specifically, we first place the input block and output block on local client to prevent embedding gradient attacks from server. Secondly, we employ key-encryption during client-server communication to prevent reverse engineering attacks from peer-clients. Lastly, we employ optimization methods like client-batching or server-hierarchical, adopting different acceleration methods based on the actual computational capabilities of the server. Experimental results on NLU and generation tasks demonstrate that FL-GLM achieves comparable metrics to centralized chatGLM model, validating the effectiveness of our federated learning framework.
- Abstract(参考訳): 公開データよりも大きく、高品質なプライベートデータは、大きな言語モデル(LLM)を大幅に改善することができる。
しかし、プライバシー上の懸念から、このデータは複数のサイロに分散されることが多く、LLMトレーニングの安全な利用が課題となっている。
Federated Learning(FL)は、分散プライベートデータでモデルをトレーニングするのに理想的なソリューションだが、クライアントに対する高い計算要求のため、従来のFedAvgのようなフレームワークはLLMには適さない。
代替のスプリットラーニングでは、ほとんどのトレーニングパラメータをサーバにオフロードし、ローカルに埋め込み層と出力層をトレーニングすることで、LLMにもっと適している。
それでも、セキュリティと効率の面で大きな課題に直面している。
まず、埋め込みの勾配は攻撃を受けやすいため、プライベートデータのリバースエンジニアリングにつながる可能性がある。
さらに、サーバが一度にひとつのクライアントのトレーニング要求のみを処理することの制限は、並列トレーニングを妨げ、トレーニング効率に深刻な影響を与えます。
本稿では,FL-GLMというLDMのためのフェデレートラーニングフレームワークを提案する。このフレームワークは,サーバ側とピア側の両方の攻撃によるデータ漏洩を防止し,トレーニング効率を向上する。
具体的には、まず入力ブロックと出力ブロックをローカルクライアントに配置し、サーバからの埋め込み勾配攻撃を防止する。
第2に,クライアントサーバ間通信において,ピアクライアントからのリバースエンジニアリング攻撃を防止するために,キー暗号化を用いる。
最後に、クライアントバッチやサーバ階層といった最適化手法を採用し、サーバの実際の計算能力に基づいて異なる加速度手法を採用する。
NLUおよび生成タスクの実験結果から,FL-GLMは集中型チャットGLMモデルに匹敵する指標を達成し,フェデレートした学習フレームワークの有効性を検証した。
関連論文リスト
- ACCESS-FL: Agile Communication and Computation for Efficient Secure Aggregation in Stable Federated Learning Networks [26.002975401820887]
Federated Learning(FL)は、プライバシ対応アプリケーション用に設計された分散学習フレームワークである。
従来のFLは、プレーンモデルのアップデートがサーバに送信されると、機密性の高いクライアントデータを露出するリスクにアプローチする。
GoogleのSecure Aggregation(SecAgg)プロトコルは、二重マスキング技術を使用することで、この脅威に対処する。
通信・計算効率の高いセキュアアグリゲーション手法であるACCESS-FLを提案する。
論文 参考訳(メタデータ) (2024-09-03T09:03:38Z) - CELLM: An Efficient Communication in Large Language Models Training for Federated Learning [0.0]
本論文は,フェデレートラーニング(FL)における大規模言語モデル(LLM)の効率的な学習手法の開発を目的とする。
まず,ローランク適応(LoRA)を用いて局所モデルトレーニングの計算負荷を削減する。
第2に、コミュニケーションコストを大幅に削減するために、トレーニング全体を通してスパース更新を通信します。
論文 参考訳(メタデータ) (2024-07-30T05:24:08Z) - Boosting Communication Efficiency of Federated Learning's Secure Aggregation [22.943966056320424]
Federated Learning(FL)は、クライアントデバイスがモデルをローカルにトレーニングしてサーバに送信する分散機械学習アプローチである。
FLは、トレーニングされたモデルからセンシティブなクライアントデータを推論できる、モデル逆攻撃に対して脆弱である。
GoogleのSecure Aggregation(SecAgg)プロトコルは、各クライアントのトレーニング済みモデルを隠すことによって、このデータプライバシ問題に対処する。
このポスターでは、このオーバーヘッドを大幅に削減する通信効率の高いセキュアアグリゲーション(CESA)プロトコルを紹介している。
論文 参考訳(メタデータ) (2024-05-02T10:00:16Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - HierSFL: Local Differential Privacy-aided Split Federated Learning in
Mobile Edge Computing [7.180235086275924]
フェデレートラーニング(Federated Learning)は、データのプライバシを維持しながらユーザデータから学ぶための、有望なアプローチである。
Split Federated Learningは、クライアントが中間モデルトレーニング結果をクラウドサーバにアップロードして、協調的なサーバ-クライアントモデルのトレーニングを行う。
この手法は、モデルトレーニングへのリソース制約のあるクライアントの参加を促進するだけでなく、トレーニング時間と通信オーバーヘッドも増大させる。
我々は,階層的分割フェデレート学習(HierSFL)と呼ばれる新しいアルゴリズムを提案し,エッジとクラウドのフェーズでアマルガメートをモデル化する。
論文 参考訳(メタデータ) (2024-01-16T09:34:10Z) - Subspace based Federated Unlearning [75.90552823500633]
フェデレート・アンラーニング(FL)は、ユーザが忘れられる権利を満たすために、特定のターゲットクライアントのFLへの貢献を取り除くことを目的としている。
既存のフェデレートされた未学習アルゴリズムでは、パラメータの更新履歴をサーバに格納する必要がある。
そこで我々は,SFUと呼ばれる,単純なyet効率のサブスペースに基づくフェデレーションアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-02-24T04:29:44Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
クライアント間の非IIDデータ分散と中毒攻撃は、現実世界のフェデレーション学習システムにおける2つの大きな課題である。
サーバ側集約プロセスを最適化する汎用的なアプローチであるSmartFLを提案する。
本稿では,SmartFLの収束と一般化能力に関する理論的解析を行う。
論文 参考訳(メタデータ) (2022-11-10T13:20:56Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。