FC3DNet: A Fully Connected Encoder-Decoder for Efficient Demoir'eing
- URL: http://arxiv.org/abs/2406.14912v1
- Date: Fri, 21 Jun 2024 07:10:50 GMT
- Title: FC3DNet: A Fully Connected Encoder-Decoder for Efficient Demoir'eing
- Authors: Zhibo Du, Long Peng, Yang Wang, Yang Cao, Zheng-Jun Zha,
- Abstract summary: We propose a textbfFully textbfConnected entextbfCoder-detextbfCoder based textbfDemoir'eing textbfNetwork (FC3DNet)
FC3DNet utilizes features with multiple scales in each stage of the decoder for comprehensive information.
- Score: 50.702284015455405
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Moir\'e patterns are commonly seen when taking photos of screens. Camera devices usually have limited hardware performance but take high-resolution photos. However, users are sensitive to the photo processing time, which presents a hardly considered challenge of efficiency for demoir\'eing methods. To balance the network speed and quality of results, we propose a \textbf{F}ully \textbf{C}onnected en\textbf{C}oder-de\textbf{C}oder based \textbf{D}emoir\'eing \textbf{Net}work (FC3DNet). FC3DNet utilizes features with multiple scales in each stage of the decoder for comprehensive information, which contains long-range patterns as well as various local moir\'e styles that both are crucial aspects in demoir\'eing. Besides, to make full use of multiple features, we design a Multi-Feature Multi-Attention Fusion (MFMAF) module to weigh the importance of each feature and compress them for efficiency. These designs enable our network to achieve performance comparable to state-of-the-art (SOTA) methods in real-world datasets while utilizing only a fraction of parameters, FLOPs, and runtime.
Related papers
- OrientDream: Streamlining Text-to-3D Generation with Explicit Orientation Control [66.03885917320189]
OrientDream is a camera orientation conditioned framework for efficient and multi-view consistent 3D generation from textual prompts.
Our strategy emphasizes the implementation of an explicit camera orientation conditioned feature in the pre-training of a 2D text-to-image diffusion module.
Our experiments reveal that our method not only produces high-quality NeRF models with consistent multi-view properties but also achieves an optimization speed significantly greater than existing methods.
arXiv Detail & Related papers (2024-06-14T13:16:18Z) - HENet: Hybrid Encoding for End-to-end Multi-task 3D Perception from Multi-view Cameras [45.739224968302565]
We present an end-to-end framework named HENet for multi-task 3D perception.
Specifically, we propose a hybrid image encoding network, using a large image encoder for short-term frames and a small image encoder for long-term temporal frames.
According to the characteristics of each perception task, we utilize BEV features of different grid sizes, independent BEV encoders, and task decoders for different tasks.
arXiv Detail & Related papers (2024-04-03T07:10:18Z) - U-shaped Vision Mamba for Single Image Dehazing [8.134659382415185]
We introduce Vision Mamba (UVM-Net), an efficient single-image dehazing network.
Inspired by the State Space Sequence Models (SSMs), a new deep sequence model known for its power to handle long sequences, we design a Bi-SSM block.
Our method takes only text0.009 seconds to infer a $325 times 325$ resolution image (100FPS) without I/O handling time.
arXiv Detail & Related papers (2024-02-06T16:46:28Z) - Hyper-VolTran: Fast and Generalizable One-Shot Image to 3D Object
Structure via HyperNetworks [53.67497327319569]
We introduce a novel neural rendering technique to solve image-to-3D from a single view.
Our approach employs the signed distance function as the surface representation and incorporates generalizable priors through geometry-encoding volumes and HyperNetworks.
Our experiments show the advantages of our proposed approach with consistent results and rapid generation.
arXiv Detail & Related papers (2023-12-24T08:42:37Z) - EasyNet: An Easy Network for 3D Industrial Anomaly Detection [49.26348455493123]
3D anomaly detection is an emerging and vital computer vision task in industrial manufacturing.
We propose an easy and deployment-friendly network (called EasyNet) without using pre-trained models and memory banks.
Experiments show that EasyNet achieves an anomaly detection AUROC of 92.6% without using pre-trained models and memory banks.
arXiv Detail & Related papers (2023-07-26T02:46:50Z) - Spatial-Frequency Attention for Image Denoising [22.993509525990998]
We propose the spatial-frequency attention network (SFANet) to enhance the network's ability in exploiting long-range dependency.
Experiments on multiple denoising benchmarks demonstrate the leading performance of SFANet network.
arXiv Detail & Related papers (2023-02-27T09:07:15Z) - Multi-scale frequency separation network for image deblurring [10.511076996096117]
We present a new method called multi-scale frequency separation network (MSFS-Net) for image deblurring.
MSFS-Net captures the low and high-frequency information of image at multiple scales.
Experiments on benchmark datasets show that the proposed network achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-06-01T23:48:35Z) - Rethinking Coarse-to-Fine Approach in Single Image Deblurring [19.195704769925925]
We present a fast and accurate deblurring network design using a multi-input multi-output U-net.
The proposed network outperforms the state-of-the-art methods in terms of both accuracy and computational complexity.
arXiv Detail & Related papers (2021-08-11T06:37:01Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Feature Flow: In-network Feature Flow Estimation for Video Object
Detection [56.80974623192569]
Optical flow is widely used in computer vision tasks to provide pixel-level motion information.
A common approach is to:forward optical flow to a neural network and fine-tune this network on the task dataset.
We propose a novel network (IFF-Net) with an textbfIn-network textbfFeature textbfFlow estimation module for video object detection.
arXiv Detail & Related papers (2020-09-21T07:55:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.