論文の概要: Disability Representations: Finding Biases in Automatic Image Generation
- arxiv url: http://arxiv.org/abs/2406.14993v1
- Date: Fri, 21 Jun 2024 09:12:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 14:03:36.866680
- Title: Disability Representations: Finding Biases in Automatic Image Generation
- Title(参考訳): 障害表現: 自動画像生成におけるバイアスを見つける
- Authors: Yannis Tevissen,
- Abstract要約: 本研究では、人気の画像生成モデルにおける障害者に対する表現バイアスについて検討する。
その結果、ほとんどの画像は、障害者を年老いて悲しく、主に手動車椅子で描いているという大きな偏見が示された。
これらの発見は、より包括的なAI開発の必要性を強調し、生成された画像におけるPWDの多様性と正確な表現を保証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in image generation technology have enabled widespread access to AI-generated imagery, prominently used in advertising, entertainment, and progressively in every form of visual content. However, these technologies often perpetuate societal biases. This study investigates the representation biases in popular image generation models towards people with disabilities (PWD). Through a comprehensive experiment involving several popular text-to-image models, we analyzed the depiction of disability. The results indicate a significant bias, with most generated images portraying disabled individuals as old, sad, and predominantly using manual wheelchairs. These findings highlight the urgent need for more inclusive AI development, ensuring diverse and accurate representation of PWD in generated images. This research underscores the importance of addressing and mitigating biases in AI models to foster equitable and realistic representations.
- Abstract(参考訳): 画像生成技術の最近の進歩は、AI生成画像への広範なアクセスを可能にしており、広告、エンターテイメント、そして視覚的コンテンツのあらゆる形態で顕著に利用されている。
しかし、これらの技術はしばしば社会的偏見を持続させる。
本研究では,障害者に対する画像生成モデルにおける表現バイアスについて検討した。
人気のテキスト・ツー・イメージモデルを含む包括的実験を通じて,障害の描写を分析した。
その結果、ほとんどの画像は、障害者を年老いて悲しく、主に手動車椅子で描いているという大きな偏見が示された。
これらの発見は、より包括的なAI開発の必要性を強調し、生成された画像におけるPWDの多様性と正確な表現を保証する。
この研究は、公平で現実的な表現を育むために、AIモデルにおけるバイアスへの対処と緩和の重要性を強調している。
関連論文リスト
- When Does Perceptual Alignment Benefit Vision Representations? [76.32336818860965]
視覚モデル表現と人間の知覚的判断との整合がユーザビリティに与える影響について検討する。
モデルと知覚的判断を一致させることで、多くの下流タスクで元のバックボーンを改善する表現が得られることがわかった。
その結果,人間の知覚的知識に関する帰納バイアスを視覚モデルに注入することは,より良い表現に寄与することが示唆された。
論文 参考訳(メタデータ) (2024-10-14T17:59:58Z) - Illustrating Classic Brazilian Books using a Text-To-Image Diffusion Model [0.4374837991804086]
潜在拡散モデル(LDMs)は、AI能力の領域におけるパラダイムシフトを意味する。
本稿は、文学作品の描写に安定拡散 LDM を用いることの可能性について考察する。
論文 参考訳(メタデータ) (2024-08-01T13:28:15Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Towards the Detection of AI-Synthesized Human Face Images [12.090322373964124]
本稿では,GAN(Generative Adversarial Networks)とさまざまなDMによって生成される人間の顔画像を含むベンチマークを提案する。
そして、異なる生成モデルによって導入された偽の痕跡を周波数領域で解析し、様々な知見を得た。
さらに、周波数表現で訓練された検出器が、他の見えない生成モデルとよく一致できることを実証する。
論文 参考訳(メタデータ) (2024-02-13T19:37:44Z) - New Job, New Gender? Measuring the Social Bias in Image Generation Models [85.26441602999014]
画像生成モデルは、社会的ステレオタイプとバイアスを永続するコンテンツを生成できる。
画像生成モデルにおける社会的バイアスを的確に、かつ、かつ、包括的に引き起こすことのできるフレームワークであるBiasPainterを提案する。
BiasPainterは、自動バイアス検出において90.8%の精度を達成することができる。
論文 参考訳(メタデータ) (2024-01-01T14:06:55Z) - Exploring Social Bias in Downstream Applications of Text-to-Image
Foundation Models [72.06006736916821]
合成画像を用いて、社会的バイアスに対するテキスト・画像モデル、画像編集と分類の2つの応用を探索する。
提案手法を用いて,最先端のオープンソーステキスト・ツー・イメージ・モデルであるtextitStable Diffusion における有意義かつ有意義なセクション間社会的バイアスを明らかにする。
本研究は、下流業務・サービスにおけるテキスト・ツー・イメージ基盤モデルの導入について、未発表の点に注意を払っている。
論文 参考訳(メタデータ) (2023-12-05T14:36:49Z) - TIBET: Identifying and Evaluating Biases in Text-to-Image Generative Models [22.076898042211305]
我々は、任意のTTIモデルと任意のプロンプトに対して、幅広いバイアススペクトルを研究、定量化するための一般的なアプローチを提案する。
我々の手法は、与えられたプロンプトに関連する可能性のある潜在的なバイアスを自動的に識別し、それらのバイアスを測定する。
本研究では,本手法が意味論的概念を通じて複雑な多次元バイアスを説明できることを示す。
論文 参考訳(メタデータ) (2023-12-03T02:31:37Z) - Invisible Relevance Bias: Text-Image Retrieval Models Prefer AI-Generated Images [67.18010640829682]
我々は,AI生成画像がテキスト画像検索モデルに目に見えない関連性バイアスをもたらすことを示す。
検索モデルのトレーニングデータにAI生成画像を含めると、目に見えない関連性バイアスが増す。
本研究では,目に見えない関連バイアスを軽減するための効果的なトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-23T16:22:58Z) - Social Biases through the Text-to-Image Generation Lens [9.137275391251517]
テキスト・トゥ・イメージ(T2I)生成は、プロダクティビティソフトウェアのクリエーター、デザイナ、一般ユーザをサポートする新しいアプリケーションを可能にする。
生成した画像に反映された一般的な社会的偏見の研究と定量化に多次元的アプローチを採用する。
DALLE-v2とStable Diffusionの2つのT2Iモデルについて検討した。
論文 参考訳(メタデータ) (2023-03-30T05:29:13Z) - Easily Accessible Text-to-Image Generation Amplifies Demographic
Stereotypes at Large Scale [61.555788332182395]
危険で複雑なステレオタイプを増幅する機械学習モデルの可能性を検討する。
さまざまな通常のプロンプトがステレオタイプを生成しており、それらは単に特性、記述子、職業、オブジェクトに言及するプロンプトを含む。
論文 参考訳(メタデータ) (2022-11-07T18:31:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。